
Auditing and Attributing Behaviours of Suspicious Android
Health Applications

Muhammad Salman

Macquarie University

Sydney, Australia

muhammad.salman@mq.edu.au

I Wayan Budi Sentana

Macquarie University

Sydney, Australia

i-wayan-budi.sentana@students.mq.edu.au

Muhammad Ikram
∗

Macquarie University

Sydney, Australia

muhammad.ikram@mq.edu.au

Mohamed Ali Kaafar

Macquarie University

Sydney, Australia

dali.kaafar@mq.edu.au

ABSTRACT
Mobile health and fitness applications for consumers, collectively

known as mobile health applications or mHealth, monitor user ac-

tivities such as steps, locations, and email. It seamlessly aggregates

sensitive information to facilitate a wide range of functions, such

as the management of health conditions and symptom checking.

Although mHealth apps provide real-time health monitoring and

easier access to healthcare resources, they can also pose serious

risks to user safety. Although the research community is primarily

well aware of the user’s exposure to several types of malware, there

has not been a large-scale in-depth analysis of suspicious mHealth

apps using a consistent methodology.

This study conducts a large-scale security and privacy analysis

of 381 suspicious free mHealth apps (chosen from a corpus of 15,893

apps) available on “Google Play”. We built a customized toolset to

perform a comprehensive analysis of these applications. We explore

the range of mechanisms used by mHealth apps to monitor users’

activities, such as photos, text messages, and livemicrophone access,

mainly through the injection of suspicious third-party libraries.

In addition, we uncover the use of obfuscation methods used by

suspicious mHealth apps to hide their malicious codes. As mHealth

apps are used by a large number of customers worldwide, we argue

that patients, clinicians, technology developers, and policy-makers

alike should be conscious of the hidden risks involved and weigh

them carefully against the benefits.

1 INTRODUCTION
With the steady growth in the population’s access to smartphone

devices, we have witnessed an explosion of mobile applications

(in short, apps) available through various online marketplaces. As

of late 2020, approximately 2.56 million apps [45] are available on

Google Play alone. Breaking these by category, we note two popular,

mutually exclusive categories of Medical and Health & Fitness apps.

Referred to as mobile health (or mHealth) apps, these encompass

a range of functions, from chronic condition management and

symptom checkers to step/calorie counters and period trackers [48].

Reflecting the growth of this app segment, recent guidelines from

the U.S. Food and Drug Administration (FDA) formalised the use of

mHealth apps for healthcare and recommended considering those

providing aid to patients or clinicians as medical devices [34].

∗
Corresponding author.

As a result of recent advances in integrating new technologies,

mobile phones are equipped with many useful sensors, which en-

able mHealth apps to offer a wide range of features and function-

alities, such as recording users’ health-related information and

seamlessly monitoring users’ behaviours and activities. Examples

of such activities are weight, smoking or drinking trackers. Another

class of such apps is used to contact your doctor, book appointments,

vaccinations, medication and get e-prescriptions [73]. Moreover,

health-related information collected and saved by these applications

is of sensitive nature, and the security and privacy of health-related

data are of particular importance [70].

Mobile health applications (mHealth apps) by design track, man-

age and store the health data of users [83]. Mobile devices and apps

used in health-related practises allow different forms of security and

privacy threats [71] and dangers such as decentralised data storage

systems, unwanted access to all the data at times and not enough

regulations etc. So, several security and privacy challenges and

relevant requirements need to be addressed [64]. In this study, we

conducted the first large-scale analysis of suspicious mHealth apps

available on Google Play with the goal of attributing the malicious

behaviour, especially the behaviour related to user information

harvesting and sharing, to the third party.

We developed custom-built test suites to analyse the source code

and app’s behaviour during the runtime of 381 suspicious mHealth

apps on Google Play. Our analysis highlights a range of security

and privacy audits from the characterisation of the malware family,

attribution of malicious behaviour in mHealth apps that leads us

to the finding of malicious third-party library and Online App

Generator involvement from the perspective of the mHealth app’s

user. Our main findings are listed below:

• 75 (19.68) % of suspicious mHealth apps embed modified or

malicious third-party libraries, including 14 apps detected

to obfuscate their libraries.

• 114 (29.92%) suspicious mHealth developer conceal the mali-

cious code inside of the apps built on the Online App Gener-

ator framework.

• 335 (88%) suspicious mHealth invoking methods to harvest

user’s information to be sent to third-party servers.

• 50 (13.12%) suspicious mHealth embedding library illegally

harvested users’ information through legitimate libraries

such as Google and Facebook.

Conference’17, July 2017, Washington, DC, USA Salman et al.

Apps
Collection

Analysis and
Attribution

Meta Info.
Analysis

Dynamic
Analysis

Screening For
Suspicious
Activities

Static
Analysis

Figure 1: Overview of our methodology for collecting and
analysis suspicious mHealth apps on Google Play. Our analy-
sis pipeline consists of three different types of analysis (meta
info, static, and dynamic) to audit suspicious activities in the
analysed mHealth apps.

• 88 (23.09%) suspicious mHealth currently available and de-

tected malicious by VirusTotal.

We believe this work further sharpens the understanding of

suspicious mHealth apps, providing guidance for phone operating

vendors and regulators in their efforts to undermine the use and

accessibility of such applications.

2 OVERVIEW OF MOBILE HEALTH
APPLICATION

2.1 Types of mHealth Apps
Portability, advanced hardware and sophisticated applications have

made a cell phone highly suitable for mHealth applications. The

landscape of health-related apps is vast and comes with various

advantages and disadvantages. In this section, we look at the state-

of-the-art health applications available on Google Play.

Apps for doctors and physicians. This is a class of highly

sophisticated applications that are not necessarily free. Nurses

and health practitioners use these apps to take advantage of drug

referencing tools, clinical decision support tools, centralized health

record system access, access to medical information materials, and

updating and sharing of patient records. One of the most popular

such apps is drug-reference guides such as ‘Epocrates’, ‘Lexicomp’,

‘Wolters Kluwer’ and clinical-decision support reference tool apps

such as ‘UpToDate’, and ‘Medscape’ [20].

Disease specific applications. These mobile apps are designed

for single diseases, such as “Eye Handbook”, an app for children’s

health safety “Outbreaks near me” and apps in orthopaedics etc

[66] [46].

Applications for the general public. The most common types

of mHealth apps are patient-centered apps. These applications are

capable of performing comparatively trivial but a wide range of

functions, helping consumers or users with managing exercise or

yoga routines, keeping a record of howmuch a person walks, sleeps,

or drinks water, managing chronic disease, weight, and smoking

[63] [76].

3 DATA AND ANALYSIS METHODOLOGY
Collecting mHealth Apps from Google Play. Google Play nei-

ther provides a complete list of mHealth apps nor does its search

functionality yield all the available apps. To overcome this and

detect as many mHealth apps as possible, we developed a crawler

that interacted directly with the store’s interface. Starting from the

top-100 apps from the Medical and Health & Fitness categories on

Google Play, the crawler systematically searched through other

apps considered similar by Google Play (i.e., other apps presented

on Google Play apps’ pages in the section ‘Similar apps’ that be-

long to the same category). For each app, the crawler collected

the following metadata: app category and price, locations where

the app is available, app description, number of installs, developer

information, user reviews, and app rating. Overall, we discovered

15,893 unique mHealth apps on the Google Play store as of January

1, 2021. Next, we use Raccoon [21] to download the APKs of the cor-

responding apps, which are then scanned with VirusTotal(VT) [90],

as explained further in the following.

Scanning mHealth apps with VirusTotal. To identify suspi-

cious mHealth apps, we inspected the APKs using the VirusTotal

public API, which aggregates the scanning capabilities of 68 popular

antivirus tools. For each analyzed app, we obtained the malware

label and several malware positives showing the class of malware,

such as trojan or adware, and the agreement among the antivirus

tools in classifying the app as malware. VirusTotal has been com-

monly used to detect malicious apps, executables, software and

domains [42–44, 49]. As each of VirusTotal’s antivirus tools may

produce false positives, we computed the aggregate AV-Rank met-

ric, i.e., the number of tools that flagged an APK as malicious, with

the maximal score being 68. To minimize the occurrence of false

positives and obtain a clear indication of malicious activity, we

restricted our further analyses to apps having an AV-Rank ≥ 2, in

agreement with previous studies on Android app malware [14, 44].

For each analysed mHealth app VT generates a report that high-

lights whether any given AV tool has detected an app as malicious

with a detection label. We aggregate labels for each mHealth app

and leverage the [77][53] and Euphony [41][33] to identify the

types and families of malware present in its source code.

The results from VirusTotal revealed a number of apps which

are exceptionally malicious in nature. Of the 381 apps analysed, 130

(34.2%) have an AV-rank ≥ 2 The detection labels from VirusTotal

showed that the apps consist of five main types of malware. Adware

was detected in 45% (172) of the apps, followed by Trojan in 25%

(97). Riskware, Malware, and Grayware combined were found in a

total of 9% (34) of the apps. The remainder of the apps were either

in an undefined category or returned a vague and undeterminable

label from VirusTotal. Table 1 lists the Top 10 suspicious mHealth

apps based on their respective AV-rank. We then use the scanning

results to analyze the capabilities (explained below) and behavior

of the 381 mHealth apps.

Static Analysis.We analyze the source code for each suspicious

mHealth app using our custom-built tools set. In particular, we

report on the app’ requesting sensitive permission analysis, the

presence of tracking libraries in the app’s source code decompiled

using Apktool [6]. Apktool decompiles Dalvik bytecode into Java

bytecode and converts .dex and classes.dex files to .smaliusing
smali disassembler. We access AndroidManifest.xml and parse

uses-permission and service tags to extract app permissions for

resources and data on a user’s smartphone.

Auditing and Attributing Behaviours of Suspicious Android Health Applications Conference’17, July 2017, Washington, DC, USA

Table 1: List of Suspicious mHealth apps with AV-rank ≥ 18.

App Title AV-rank Installs Rating

Urdu Best Totkays 27 10,000+ 3.8

EEMCQ 22 100+ N/A

Nursing Care Plans List 20 5,000+ 4.6

Nursing Diagnosis and Care Plans FREE 20 10,000+ 4.4

Aapak Totkay 20 100,000+ 3.8

Mental Health and Psychiatric Nursing Care Plans 19 1,000+ 4.1

Fit Bites 19 10,000+ 4.1

YOGA FOR DIABETES 18 10,000+ 3.4

TritionRx: Tube Feeding 18 1,000+ 3.6

We analyze the extracted permissions for potential illegit-

imate requests. mHealth apps often need sensitive permis-

sions to work. Permissions like ACCESS_COARSE_LOCATION and

ACCESS_FINE_LOCATION may be questionable in non-mHealth

apps, but they may be appropriate in mHealth apps to improve

step counting or pedometer accuracy. The permissions of the Top

20 benign mHealth apps from Google Play’s Top 10 Health & Fit-
ness and Top 10 Medical apps are analysed to determine if the

requested permissions are due to malicious behaviour or mHealth

functionality. Different mHealth apps may require various dan-

gerous permissions. For comparative analysis, suspicious mHealth

apps are divided into Health & Fitness and Medical categories. As a
way to flag apps with potentially dangerous behaviours, the per-

missions sought by suspicious mHealth apps are compared to the

permissions typically asked by malicious apps [93][30][54].

To determine if apps’ requested permissions are necessary, we

map each app’s permission to Android To this end, we leverage

method-to-permission mappings techniques proposed by PScout

[19] and Johnson et al. [47]. In particular, we examine the smali
files to determine which calls launch permission-protected Android

API calls. Any permissions not in the API calls were deemed ex-

cessive. This reveal which suspicious mHealth apps request the

permissions that they require and which requests are excessive per-

missions. Once the API calls are mapped to the apps’ permission,

we then perform manual checks to determine their origin. This is

disclosed if the permissions are asked by the app itself or a third-

party library embedded in the source code. Lastly, a dictionary of

malicious signatures (including malware domain URLs) obtained

during malware detection is established together with known mal-

ware signatures [15], to help detect the origin of suspicious app

behaviour. This is used to search for malware signature calls or

invoke related methods.

Apktool expands third-party libraries in the apps whereas

Python’s os.walk function extracted the libraries and subdirec-

tories. Apps that have several classes.dex files are expanded into

distinct directory trees, which are then traversed to extract the third-

party libraries. After collecting the libraries, they are compared to

a dictionary of tracking libraries compiled from prior research [44].

The functioning of any libraries not listed in the dictionary was

determined by manually analysing and researching them. Libraries

that were discovered to be malicious or unknown were flagged as

suspicious, and their functionality was further investigated.

Dynamic Analysis. To perform dynamic analysis on the apps,

we execute them in an observable environment. Android Studio

supports virtual Android phones for this purpose. Most of the trials

used a virtual Google Pixel running Android OS 8.0. However, due

to varying app requirements, some were run on older Android

phones and versions of Android OS. For behaviours to be triggered

in the apps, their activities and components must be interacted with.

To automate this procedure and increase the number of interactions,

the input generatorMonkeyRunner [60] was utilized. Moreover,

mitmproxy (an interactive HTTPS proxy) [58] was used to monitor

and record the content of each request, as depicted in Figure 2. In

particular, we analyze the content of POST requests as they are used

to exfiltrate data to external servers. We examine POST requests to

ascertain the exact data communicated between a given analyzed

app and its external servers. We also examine whether the analyzed

applications encrypt communications via services like HTTPS to

protect against in-path attacks.

Internet

Figure 2: Overview of our testbed for the analysis of the
runtime, and network behaviors of (suspicious) apps.

This investigation focused on whether apps communicated with

malicious domains and what information was shared with third-

party domains. The network packets were decoded in order to

obtain the requested URLs and domains. Using VT’s URL scan-

ner, the security of each domain was evaluated to identify if apps

transmitted or received data from malicious domains.

Metadata Analysis We leverage metadata that we collected

from the Google Play store to characterize the behaviors of suspi-

cious mHeath apps. In particular, for each suspicious mHealth app,

our crawler collects metadata, including name, description, version,

category, size, latest update date, rating, number of ratings and

installs, minimum Android version, and developer details. Using

the app’s description, we leverage CoreNLP (a natural language

processing tool) [56] to determine the main declared functionality

of the app on Google Play. Moreover, we use app’s average rating

and the number of installs to characterize the popularity of apps

on Google Play. We also use user reviews text to characterize users’

perceptions of suspicious mHealth apps.

4 CHARACTERIZING MALWARE FAMILIES
In this section, we characterise the malicious code presence in the

analysed mHealth apps. First, we identify and classify the malware

family of each suspicious mHealth app. Since the VirusTotal returns

information based on each provider’s standard, we then aggregate

the malware families and types based on the machine learning

Conference’17, July 2017, Washington, DC, USA Salman et al.

aggregator for the malware family conducted by [77][53] and Eu-

phony [41][33]. To increase the confidence of malicious behaviour,

we only considered apps with an AV-rank ≥ 5 in our analysis. The

results for the malware family and type classification are provided

in the Table 2.

Table 2: Malware families detected in Suspicious mHealth
apps, ordered by number of apps infected.

Family Type # of Apps App Example # of Install AV Rank
Airpush Adware 77 Uses for Coconut Oil 100,000+ 16

Leadbolt Adware 8 Aapak Totkay 100,000+ 20

Revmob Adware 5 Sleep Analyzer 100,000+ 13

Autoins Trojan 4 Simvalley PhoneWatch 100,000+ 8

AppsGeyser Adware 2 Clickpharmacy - 13

SmsReg Trojan 2 Madarsho 50,000+ 10

Viser Adware 1 Urdu Best Totkays 10,000+ 27

Buzztouch Trojan 1 EEMCQ 100+ 22

Table 2 shows that the malware type is dominated by adware

and Trojan. Antivirus tools in the VirusTotal report label with the

string "a variant of" for a particular family name, indicating that

the malware is modifying an original or a legit code or library. Our

other result found that several malware family names returned

by VirusTotal replicate the original or legit library and have the

following characteristics.

Airpush: “A variant of Airpush” malware is leveraging the Air-

push notification library that is used to embed the advertisement

library into the apps. Originally, Airpush is a legit library used to

monetize apps. However, a malware developer modifies this library

to display an excessive ad in their app. During the runtime, this

malware loads libjiagu-1004670200 dynamic library and har-

vests the user’s location, device type, MAC address, and network

operator information. Our dynamic analysis also found that this

malware sends the Android ID that is used as a device identifier dur-

ing ads monetization. Other than the dynamic library, this malware

tainted a temporary database transaction in webview.db-journal
indicating that the apps open an SQLite database in Webview. As
a note, Android creates a file with the “-journal” sufix for every

temporary SQLite transaction conducted on a device. To protect

its binary, this malware obfuscates its library and leverages a cus-

tomized name, although analysis of their method headers and class

structures reveals that they are obfuscated versions of the legit

advertising library.

Leadbolt: Similar to Airpush, LeadBolt also invokes sev-

eral geographical or location tagging methods such as

getCountry(), getLongitude() and getLatitude() en-

abled by ACCESS_FINE_LOCATION permission. LeadBolt also

requested the privilege to access the devices’ logs and execute

shell scripts to harvest CPU maximum and minimum frequency

information. A tainted temporary SQLite transaction is also

found as ua.db-journal file crafted under the app’s directory. As

confirmed by [92], this malware can take over the current display

in the devices. Based on our observation and results returned by

VirusTotal, the name of this malware is similar to the Leadbolt

monetizing library provided by [50]. Hence, we suspect this

malware impersonates or modifies the original library.

Appsgeyser: Originally, AppsGeyser is an Online App Genera-

tor (OAG) that allows non-programming end-user to create their

own mobile apps [65]. However, in this study, we observe that the

suspicious mHealth app developer has modified the original AOG

platform to conduct malicious activity. The variant of Appsgeyser

malware is detected by Microsoft, ESET, and Quick-Heal anti-virus

engines. In contrast, other engines such as NANO and Avira de-

tect this variant as a Potentially Unwanted Application (PUA) or

FakeApps variant. In this study, we found this malware injected

into two apps. Analysis of the network traffic found that both apps

communicated with five different malicious domains and made

a POST request to the malicious domain, such as “adaranth.com”

in which it shared the device’s screen dimensions, country code,

latitude, and longitude of the user’s device.

Revmob: It is a Brazilian-based mobile ad network company

that provides a service library for mobile app monetization. Unfor-

tunately, this library is no longer supported due to the company’s

operational issues. We then traced the online code repository and

found several GitHub repositories related to the Revmob ad mone-

tization library. We suspect that the five suspicious mHealth apps

that were detected contained the Revmob malware, had duplicated

and modified the library, and used it in their applications. Forti-

guard labelled this malicious library as “adware” because it displays

advertising content to the user. Typically, the display appears as

pop-up advertisements and takes over the current Android display

without user consent [36].

Autoins: This malware was found in 4 suspicious mHealth apps

and detected by eight antivirus engines. However, we could not

find more detailed information about this malware from each an-

tivirus repository. The eight antiviruses only mention that Au-

toins is a Trojan-type malware. Interestingly, we found several

reports in [25, 89] revealing that the Autoins variant was found

in pre-installed apps on Android devices manufactured in East

Asia and Europe. This trojan variant is an auto-updater known as

Android/PUP.Riskware.Autoins.Redstone.
SMSreg: Fortiguard classifies this malware as Trojan [35],

while Microsoft flagged it as a Potentially Unwanted Application

(PUA) [57] and some other engines marked it as Grayware or

Riskware [31]. Currently, there is still a debate about whether this

kind of library can be categorized as malware or not. Regarding

SMSreg, several discussions on the Malwarebyte forum show that

this library is used to perform auto registration via SMS. One of

the apps uses it to do billing via SMS. Some apps that adopt this

library have been whitelisted by Malwarebytes [55].

Viser: The app injected by Viser family malware request

six dangerous permissions, including ACCESS_COARSE_LOCATION,
ACCESS_FINE_LOCATION, and READ_PHONE_STATE. The obfuscated
folder name is found and contains Vserv Mobi sub-directory. The
API call analysis shows that Vserv Mobi invokes numerous methods,

including SMS-related activities and obtaining the device’s exact

coordinates, Device Type, ID, and MAC Address. Additional calls

were found to invoke the DownloadManager of the android.app
API to dynamically fetch additional app components. The network

traffic analysis found multiple requests to the “vserv.mobi” domain

and shared the user’s Time Zone, Latitude, Longitude, Screen Di-

mensions, Advertising ID, Serial Number, and IMEI.

Auditing and Attributing Behaviours of Suspicious Android Health Applications Conference’17, July 2017, Washington, DC, USA

Buzztouch: Like AppsGeyser, Buzztouch is an Online App Gen-

erator(OAG). Other than the OAG service, Buztouch also provides

various plugin services for iOS and Android. However, in this study,

we believed that the suspicious mHealth detected to contain Buz-

ztouch malware was crafted by Buztouch OAG. Other than the

Facebook third-party library, this apps only consist of the main

directory called v1_4 with sub-directory eemcq, which matches the

App’s ID. This indicates that the app did not embed any Buzztouch

plugin library. Analysis of the App’s API calls found that the v1_4
directory invokes many calls that are used to harvest information

related to the device coordinates, Last Known Location, Device ID,

Phone Number, and Serial Number. Further analysis of the API

calls also found that the library uses the java.net API to invoke
the openConnection() method. This call’s parameter is an HTTP

request to the “www.buzztouch.com” domain. The query of this

GET request includes the device’s ID, brand, model, and latitude

and longitude.

5 SUSPICIOUS BEHAVIOUR ATTRIBUTION
In this section, we leverage our analysis (cf. § 3) of the source code of

each suspicious mHealth app to audit and attribute any suspicious

behaviour. In particular, we report on the potential misuse of apps’

capabilities exhibited by requested permissions and the integration

of third-party libraries. We also present our analysis of suspicious

mHealth apps piggybacking online app generators to generate mal-

ware at low development costs rapidly. We also elaborate on apps’

abilities to harvest and exfiltrate users’ sensitive health-related data

to external servers and the mechanisms employed to hide their

potentially suspicious behaviours. Finally, we present byte entropy

analysis to validate the injection and integration of malware in the

source.

5.1 Misusing Permissions for Potential Exploits
Due to the significant number of dangerous permissions requested

by both the suspicious and benignmHealth apps, determining an app

as malicious solely based on the dangerous permissions it requests

was not feasible. As such, the permissions of suspicious apps were
compared with permissions that are commonly found in malware.

This also revealed which permissions have the potential for misuse.

The apps can execute malicious code silently or take over the entire

phone screen with permissions granted.

Table 3: Overview of permissions potentially misused by
suspicious mHealth apps.

Type Name # of Apps Possible misuse
Dangerous WRITE_EXTERNAL_STORAGE 244 Store malicious data

READ_PHONE_STATE 129 Tracking user devices

CALL_PHONE 40 Make phone call without permission

Normal INTERNET 370 Download malicious scripts

WAKE_LOCK 239 Run malicious code continuously

VIBRATE 120 Disable vibrator and notifications

RECEIVE_BOOT_COMPLETED 116 Execute malicious code when booted

GET_TASKS 48 Monitor and discover private info

Signature SYSTEM_ALERT_WINDOW 31 Display ads over other apps

READ_LOGS 20 Access sensitive data

5.2 Abusing Third-Party Libraries Privilege
Guided by the results of the malware characterization in section 4,

we then took a deeper look at the mHealth apps directory. During

our observations, we found similarities between the name of the

malware family and several popular commercial advertisement li-

braries used to monetize mobile apps, such as Revmob and Airpush.

However, we found inconsistencies between the use of this adver-

tisement library and VirusTotal’s findings. For example, we found

that 27 mHealth apps embed Revmob libraries in their apps (see

Table 4). However, VirusTotal’s detection results show that only

five apps (see Table 2) are infected with this type of malware. Based

on this, we believe the five applications detected containing viruses

resulted from modifications from the legit Revmob library. Our

further research found that the Revmob library is publicly available

in the GitHub repository,
1
hence modifications to this library can

be conducted efficiently.

Another indication that enhances our suspicion that mHealth

apps modify legit libraries is shown in the adoption of the Air-

push library. The 77 apps containing the Airpush malware family

have varying AV-ranks, with 16 being detected by more than ten

anti-virus engines. We then observed more detail and found that

the 16 apps were obfuscated in certain directories by renaming

the Smali file into shorter names such as a.smali, a$1.smali,
b.smali, etc. Each obfuscated library has a unique name; how-

ever, analysis of their method headers and class structures reveal

that they are obfuscated versions of the same advertising library.

Further analysis reveals numerous calls which invoke methods re-

lated to Airpush, including a method called getAirPushAppId(),
and calls that construct URLs for the "ads.airpush.com" domain.

The network traffic of these apps found that frequent GET requests

were made to the "apportal.airpush.com" domain. Additionally, ten

apps shared critical device and user data with the "api.airpush.com"

and "www.pushnotificationsender.com" domains. These include the

device’s brand, model, IMEI, time zone, locale, country, and exact

latitude and longitude.

Originally, Airpush (rebrand into Airnow) is a legitimate adver-

tising platform that assists Nissan, Walmart, KFC, and Huawei with

advertising [3]. We believe that the suspicious mHealth developers

have abused this library to gain the privilege of push notifications

owned by this library, to excessively loading advertisement content

to increase the monetization revenue of the apps.

Except for Qihoo library, Table 4 shows all modified third-party

libraries categorised as advertisement or analytics supporting ad-

vertisement libraries. Qihoo is an Internet security company that

provides a wide range of protection, including Anti-virus, binary-

protector and various security plug-ins for web and mobile-based

applications [24, 85]. Our API calls analysis revealed that the li-

brary dynamically loads an additional library called Jiagu which
invokes the chmod native command on a file in the Jiagu library.
This command is used to change the access permissions of file sys-

tem objects to launch the Jiagu Packer platform. This finding is

consistent with the result returned by APKiD in the sub-section 5.6,

where two mHealth apps are embedding Packer to protect their

binary files.

1
https://gist.github.com/revmob-sdk/3383267

Conference’17, July 2017, Washington, DC, USA Salman et al.

Table 4: 3rd-party libraries cause suspicious behaviours (left)
and Online App Generator (right) in Suspicious mHealth
apps, ordered by number of apps injected.

Modified Third-party Library Online App Generator (OAG)
Name #of Apps(%) AV Rank Name #of Apps(%) AV Rank
Revmob 27 (7.07%) 1 to 10 Seattleclouds 65 (17.06%) 1 to 16

Umeng 16 (4.19%) 1 to 4 Appinventor 25 (6.56%) 1 to 16

Airpush 16 (4.19%) 1 to 10 AppsVision 9 (2.36%) 11 to 17

Leadbolt 8 (2.09%) 1 to 10 Mobincube 9 (2.36%) 1

WQMobile 2 (0.52%) 14 AppsGeyser 6 (1.57%) 1 to 10

Qihoo 2 (0.52%) 16 Buzztouch 1 (0.26%) 22

Vserv Mobi 1 (0.26%) 27

Rever 1 (0.26%) 9

Gmobi 1 (0.26%) 8

Total 75 (19.68%) Total 114 (29.92%)

5.3 Piggybacking Online App Generators
(OAGs)

During static analysis, we observe a particular naming pattern on

several mHealth apps. Our further research find that the applica-

tions are created using Online App Generators (OAGs) or Online

App Builders. The OAGs provide an online platform for the end-user

with low-code to non-code skills to create their mobile apps [65]. An

OAG provides various advantages, including support for multiple

platforms so that the apps can run on iOS or Android, support for

different monetizing components, and even the publishing pipeline.

To observe the existence of OAG used to create suspicious

mHealth apps, we then conduct OAG fingerprinting through a

specific indicator. Several platforms, such as Appsvision and
Mobincube can be easily identified from the Package ID due

to the package naming convention. While the others, such as

Seattlecloud and Appsgeyser required more effort of decompi-

lation and running through the app’s directories. The result of OAG

fingerprinting in Table 4 shows that Seattlecloud is dominating the

OAG usage to build suspicious mHealth apps with 65 apps, followed

by Appinventor and Appsgeyser with 25 and 9 apps, respectively.

Research in [65] discovered that the OAG platforms are vulnera-

ble to specific attacks, including reconfiguration and infrastructure

attacks. In this study, we find the real case of how OAG platforms

failed to protect their products so they could be utilized to con-

duct malicious activities. Table 4 shows that at least 114 suspicious

mHealth apps leverage the OAG platforms to conceal their mali-

cious code. We believe this malicious behaviour is not inherited

from the OAG platform because each app has non-uniform be-

haviour. As a sample, we then traced the existence of Appsvision
and find that at least 485 mHealth apps were built on this platform.

However, from this number, we only determine nine apps detected

to contain malware by VirusTotal.

Moreover, the AV-rank of apps developed by the same plat-

form also shows various numbers, indicating the non-uniformity

of mHealth malicious behaviour. Another case of customized ma-

licious behaviour of OAG-based apps is also shown by suspicious

mHealth apps built on AppsGeyser, where only two apps (Table 2)

were detected to contain Appsgeyser malware by VirusTotal out of

6 suspicious mHealth apps (Table 4) developed on the Appsgeyser

OAG platform. In addition, we found that only 2 out of 65 apps

leveraging Seattlecloud downgraded their connection protocol to

plain HTTP, indicating that the flaw was not inherited from the

original OAG platform.

Since the Android OS requires all applications running under its

environment are packaged in the form of an APK file, piggybacking

malware code into the OAG platforms is even more reasonable.

OAG allows malware developers to package applications without

developing their apps from scratch, considering that malicious code

is generally only a small part of the entire application package.

5.4 Information Harvesting and Sharing
Based on our methods to permission mapping (cf. § 5.1), we

observe that suspicious mHealth apps massively harvested

user and device information. As shown in Table 5, 88% (335)

of mHealth apps invoke getPhoneType(), getDeviceId(),
getNetworkOperatorName() and getNetworkCountryIso()
methods under the TelephonyManager class to request such

information through android.telephony API. We then trace the

request’s source and found that most of the methods are invoked

by third-party libraries, such as Seattleclouds, Pollfish, Tencent,

Startapp, Tappx, and Truene, categorized as Targeted Advertising

Library by [44].

The harvested information is then sent to the associated third-

party library’s server. During the dynamic analysis, we found at

least 32% (121) of the apps share the information with advertis-

ing domains through the use of POST requests. Analysis of the

requested content revealed that the app shared information about

the device, such as the device type, the screen dimensions, and the

country code the phone is set to. Additionally, the exact latitude

and longitude of the device were found in the URL query. Although

this measurement result is considered to be lower bound due to

technical issues such as SSL pinning adoption, this data harvesting

and sharing are worrisome.

Data harvesting and information sharing are typically conducted

by the advertising library to create a user profile and used to set up

a corresponding ad that matches the user profile. Having a match-

targeted user can increase the possibility of ad hits to monetize the

apps. The monetisation from the ads hit can be a source of funding

for the app’s developer since all the suspicious mHealth apps are

free to download.

To check whether the information harvested is also shared

with malicious domains, we tested all the domains accessed by

mHealth apps against VirusTotal. As a result, we found that 21

apps shared the information with 22 domains flagged as mali-

cious and phishing sites, including adaranth.com, ds-club.ru,
live.chartboost.com and cdn2.editmysite.com. We also cap-

ture the request-response from ds-club.ru returned JavaScript

which loads an Ad and sets its visibility to hidden.
In addition, we found that 36 apps shared data in plain text

through unencrypted HTTP requests. The content in these POST

requests ranged from sharing data about the screen dimensions, OS

version, and device model to sensitive data such as the Device ID,

Serial Number, MAC Address, and the country of the device.

5.5 Cross Library Data Harvesting
Due to massive method invocations related to user information

harvesting, we were suspicious if the legit third-party library did

Auditing and Attributing Behaviours of Suspicious Android Health Applications Conference’17, July 2017, Washington, DC, USA

Table 5: Dominant API calls, methods and class invocation detected in the source codes of suspected mHealth apps.

API Call Class Method # of Apps
android.media MediaRecorder 107 (28%)

AudioRecord 25(7%)

android.hardware SensorManager 339 (89%)

Camera 307 (81%)

android.telephony TelephonyManager getPhoneType() 335 (88%)

getDeviceId() 335 (88%)

getNetworkOperatorName() 335 (88%)

getNetworkCountryIso() 335 (88%)

SmsManager sendTextMessage() 45(12%)

sendMultipartTextMessage() 45(12%)

PackageManager getInstalledPackages() 72(19%)

getInstalledApplications() 103(27%)

java.util Locale getCountry() 367 (96%)

getLatitude() 334(88%)

getLongitude() 334(88%)

LocationManager getLastKnownLocation() 268(70%)

android.accounts AccountManager 199 (52%)

not just trigger the invocation. Hence, in this study, we also fig-

ure out the appearance of third-party libraries that illegally collect

users’ information from the legit libraries installed on devices such

as Facebook and Google. This type of data gathering mechanism

is called Cross Library Data Harvesting (XLDH) [91]. This library

actively monitors the package manager to find a targeted legit li-

brary installed on the device. Those libraries then illegally harvest

the user’s data by capturing the information flow during the in-

formation interchange via API. Due to this illegal and malicious

operation, Facebook has taken legal action against the XLDH library

provider [91].

Since we were struggling to intercept information flown in

HTTPS tunnel and breaking the certificate authority of the SSL

pinning mechanism, we traced the appearance of the XLDH library

in mHealth apps by relying on the previous research of [91]. Ta-

ble 6 shows that 50 mHealth apps embed the XLDH library in their

apps. The trace results of Revmob and Umeng XLDH libraries are

aligned with the number of libraries found to be malicious in Ta-

ble 4. Hence, we believe this XLDH library could be a source of

malicious behaviour detected by VIRUSTOTAL.

5.6 Adopting Evasive and Obfuscation Methods
We determine whether an app uses any means of evading, obscur-

ing, or disrupting the analysis of parties other than the application

developers. In fact, malware developers rely on these techniques

to evade primary analysis layers of application market stores such

as Google Play [23]. On average 52% of its malware samples lever-

age anti-analysis techniques to evade, obscure, or disrupt analysis

methods [40]. In Appendix A, we provide a detailed analysis of the

six different types of evasion techniques employed by the analysed

mHealth apps.

5.7 Byte Entropy Analysis
Elastic Malware Benchmark for Empowering Researcher (EMBER)

[5] is popular among researchers as a benchmark dataset for Win-

dows portable executable files. The EMBER dataset contains nearly

1.1 million samples. The LIEF project is severed as a backbone

framework to extract features from PE files such as (i) General file
information, (ii) Header information, (iii) Imported functions, (iv)
Exported functions, (v) Section information, (vi) Byte histogram,

(vii) Byte entropy histogram, and (viii) String information. The raw

features are extracted and stored in JSON format, normalised into

a feature vector for automated analysis such as classification.

Inspired by EMBER, we extend the static analysis to APKs as

follows:

(1) Obtain VDEX and ODEX files by installing APK on An-

droid devices. The VDEX and ODEX files were introduced

by Google to optimise running time and boost time for APK

apps in the Android environment.

(2) Utilise the LIEF framework to extract raw features from

VDEX and ODEX files [1].

(3) Convert the raw features into vectors for automated analysis

and classification.

To categorise the samples by Binary Protection Type, we can

characterise them based on byte entropy (see Figure 3). Malware

authors usually encrypt or compress their applications to conceal

their malicious intent from scanners. These methods transform

the application body into a series of random-looking data bytes.

An efficient way to detect the encryption or packer trails in an

application is to calculate the statistical variation of byte data in a

fixed block length (e.g. 256 bytes.

Figure 3) depicts that the suspicious samples have the same pat-

tern with different high and low entropy on specific byte positions.

This information confirms the observation above that the suspicious

applications were built using a few common online app builders

(see § 5.3). We observe that 114 (29.9%) applications with “malicious”

Conference’17, July 2017, Washington, DC, USA Salman et al.

Table 6: Malicious Cross Library Data Harvesting (XLDH) library detected in suspicious mHealth apps.

XLDH Library Exfiltrated Data Exfiltration Endpoints # of Apps (%)
com.revmob Facebook AccessToken https://android.revmob.com 27(7.08%)

com.umeng.socialize Facebook/Twitter/Dropbox/Kakao/Yixin/Wechat/ http://plbslog.umeng.com/umpx_share 6 (1.57%)

QQ/Sina/Alipay/Laiwang/Vk/Line/Linkedin’s

AccessToken and user data (ID/name/link/photo)

com.inmobi Google activity https://sdkm.w.inmobi.com/user/e.asm 4 (1.05%)

com.appfireworks goole id, android id http://api.appfireworks.com/t/ 3 (0.78%)

com.yandex.metrica Google Advertising id, Android id https://startup.mobile.yandex.net 3 (0.78%)

cn.sharesdk Bytedance http://api.share.mob.com/log4 2 (0.52%)

com.ad4screen Facebook appid, AccessToken http://api.ad4s.local 2 (0.52%)

com.appsgeyser Google Advertising id, Android id, IMEI, Mac Address https://ads.aerserv.com/as/sdk/v3/ 2 (0.52%)

com.oneaudience Facebook id, name, gender, email, link, Twitter user data https://api.oneaudience.com/api/devices 1 (0.26%)

Total 50 (13.12%)

activities were added manually after the apps were generated. In

addition, there are 14 applications with obfuscated activities, which

explains why the obfuscation bars have higher entropy than others.

0-50 51-100 101-150 151-200 201-255
Byte position

104

105

Av
er

ag
e

By
te

 E
nt

ro
py

(lo
g-

sc
al

e)

Packer
Obfuscator

Anti Disassembly
Manipulator

Anti Debug
Anti VM

Figure 3: Byte entropy comparison of evasive and obfuscation
methods (cf. Appendix A) employed by suspicious mHealth
apps.

6 STATUS QUO AND USER AWARENESS
Status Quo. Recently, Google conducted a major restructuring

of its Play store, requiring developers to upload and update their

apps in Android App Bundle (AAB) rather than APK formats. This

mechanism mandates that developers share the private signing

key so that Google can generate the app bundle and sign the AAB

with the same private key [81]. With this access, Google has the

privilege to conduct an integrity check to support its app security

improvement program and remediation.

Another recent major update was conducted in June 2022, when

Google changed the security and privacy policies and drastically

changed the interface. The changes force the app’s developers to

align their SDKs with Google Play Store policies. This mechanism

allowed Google to control and capture usage statistics, crash re-

porting, and give the ability for SDK providers to communicate

with app developers through Play Console and Android Studio.

Another security measure by Google comes from improving Play’s

app-integrity tools. Google Play App Signing helps millions of apps

on Google Play ensure that app updates can be trusted [52].

After all these security system improvements, we then retraced

the existence of malicious mHealth on the Google Play Store. Out

of a total of 381 malicious mHealth that we have, we found that 188

malicious apps are still on the Play Store. Then, to see the existence

of malicious mHealth apps, we downloaded 188 apps and evaluated

them against VirusTotal. As a result, 88 mHealth apps were detected

as containing malware, with 16 having an AV-rank of 5 or above.

This indicates that the security improvements of the Google Play

Store did not detect and remove suspicious mHealth apps from their

repository. Table 8 shows the Top-10 malicious mHealth currently

on the Google Play Store.

Table 7: Sha256 hash comparison among 381 mHealth apps,
188 mHealth that still (as of August 31, 2022) exist at Google
Play.

Suspicious, Apps in 2022
Found in 2021 Found Updated Suspicious # of Apps(%)

✓ - - - 381 (100%)

✓ ✗ - - 193 (50.7%)

✓ ✓ - - 188 (49.3%)

✓ ✓ ✓ - 140 (36.7%)

✓ ✓ ✗ ✓ 37 (19.7%)

✓ ✓ ✓ ✓ 51 (27.1%)

✓ ✓ ✓ ✗ 89 (47.3%)

To observe if the malicious behaviour was obtained from the

prolonged mHealth apps, we then compared the Hashed files of the

mHealth apps with mHealth that existed after June 2022 and also

with mHealth that was still detected as malicious by VirusTotal

after June 2022. Table 7 lists that 140 of the 188 apps are new apps

and the remaining 48 apps are apps that have not been updated.

Even though they have been updated, 51 mHealth apps still inherit

malicious behaviour from the previous version, while the remaining

89 have been whitelisted by VirusTotal.

User Awareness Analysis of the user awareness with respect

to the presence of malware in the apps found that only 4% (15)

of the apps have negative reviews, which correlates to the type

of malware present in the apps. In 14 of these apps, the negative

reviews relate to excessive advertising hindering the functionality

of the app. Only one app has a review recognising a Trojan found

through the use of antivirus software.

82% of the apps have more than 1K installs. Six apps have 1M+

installs and nine have 500K+. All 15 apps with more than 500K

installs have an AV-rank ≤ 3. Eight of the apps that have 100K+

installs have an AV-rank ≥ 4, with two having an AV-rank ≥ 20.

Figure 4 shows that the majority of apps are positively rated by

users, with 54% (204) of the apps having a rating > 3.0.

Auditing and Attributing Behaviours of Suspicious Android Health Applications Conference’17, July 2017, Washington, DC, USA

Table 8: List of suspicious mHealth apps that still accessible
(at time of writing, August 21, 2022) on Google Play. Here
AV-rank shows the number of antivirus tools agreeing on
flagging an mHealth app as suspicious.

No App Title AV-rank #of Install

1 Fit Bites [67] 17 10,000+

2 Smoke’n Vap’z [11] 17 10+

3 Vap’Pause [13] 16 100+

4 Spa Thérapie [12] 16 10+

5 Cellu hit [9] 16 10+

6 Institut O’plaisir [8] 15 50+

7 COMM [7] 15 100+

8 Calorie Calculator BMR BMI ads [38] 14 1,000+

9 OPTIKONCEPT [10] 13 10+

10 BMI Calculator [37] 13 1,000+

11 (agricultural, food, safety) [51] 12 1,000+

12 TeleEmergencias [59] 12 100+

13 Cara Gaya Renang [16] 7 1,000+

14 7 Minute Super Plank Workout [75] 6 50,000+

15 1byone Health [2] 6 100,000+

16 Cara Menghilangkan Jerawat [18] 5 500+

17 Learn To Do Pull-Ups [74] 4 50,000+

18 simvalley PhoneWatch [72] 3 100,000+

19 Cara Latihan Badminton [17] 3 10,000+

20 BodyMonitor [88] 2 100,000+

1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5 4.5-5
Average Rating

0

20

40

60

80

of

 A
pp

s

Figure 4: Distribution of average ratings of Suspicious
mHealth apps at Google Play.

7 RELATEDWORKS
Some research related to mobile health apps security and pri-

vacy analysis has been done previously, including a study con-

ducted by [26], that focuses on the establishment of an overview of

mHealth apps offered on iOS and Android with a particular focus on

potential damage to users through information security and privacy

infringements. [61] conducted research that focused on identifying

relevant security concerns on the server side of mHealth apps and

comparing the servers used by mHealth apps with servers used

in all domains. [87] conducted the first large-scale analysis of mo-

bile health (mHealth) apps available on Google Play to provide a

comprehensive view of mHealth apps’ security features and gauge

the associated risks for mHealth users and their data. While [86]

investigated whether and what user data is collected by mHealth

apps, characterised the privacy conduct of all the available mHealth

apps on Google Play, and gauged the associated risks to privacy. [4]

focuses on reviewing and analysing privacy policies, data sharing,

and security policies of women’s mHealth apps on the Apple Store

and Google Play. [80] researched security and privacy analysis

of apps that provide tracking and checking symptoms of health

conditions or diseases through mobile devices. However, none of

the mentioned research on the characterization and attribution of

malicious behaviour appears on mobile health apps, which become

our focus in this study.

8 DISCUSSION AND RESPONSIBLE
DISCLOSURE

Several studies have conducted security and privacy measurements

of mHealth apps using standard parameters. However, none of

these studies conducted an audit and attribution of the causes of

maliciousness from mHealth apps. Our interesting finding begins

when we characterize the malware found by VIRUSTOTAL, where

there is a similarity in name between the malware family and the

commercial advertising library that is circulated widely. Based on

this fact, we observed further and found that 19.7% of the suspi-

cious mHealth developers had abused the advertising library to

gain privilege and massively invoked advertising content in order

to monetize their apps. This coherent is considering that all of

the mHealth apps in our corpus are free and require income for

maintenance.

We also found a pattern in packages and directories naming

based on the third-party libraries’ analysis. Our further research

found that 29.9% suspicious mHealth were built using the Online

App Generator (OAG). This framework is a medium for suspicious

mHealth app developers to insert malicious code, which is only a

small proportion of the total code. This is supported by the results

of the entropymeasurement at the byte level code, where we did not

find a significant delta among mHealth apps’ entropy that embeds

different binary protectors. This small entropy is caused by a small

delta of code, considering that the malicious code is only a small

part of the total APK package.

Our analysis of API calls and runtime found that there was a

massive user information invocation being sent to a third-party

server. We also found that 20 mHealth apps communicated with

domains flagged as malicious. However, what is worrisome is the

user’s low level of awareness of this information harvesting. This

is indicated by a rating that has an average of above three, which

shows that the user still has a good perspective on this suspicious

mHealth. We suspect that users are unaware that their data has

been harvested by a third party or do not really care if the data

is sent to a third party. From a developer’s perspective, we also

suspect that some developers are unaware that their application is

detected as malicious, considering that many apps are developed

with OAG and embed third-party libraries. Therefore, we believe

this study’s results can provide a new perspective on the severe

problems that suspicious mHealth poses for users and developers.

Responsible Disclosure.We contacted and shared our findings

with the app developers of apps requesting sensitive permissions,

apps that users negatively review, and apps with embedded third-

party tracking libraries. We also contacted app developers, which

our tests revealed as possibly containing malware in their APKs.

We have disclosed and confirmed our findings to the mHealth

Conference’17, July 2017, Washington, DC, USA Salman et al.

developers mentioned in this paper. We have not yet received any

responses from the contacted developers. We will update our paper

according to the responses and the confirmations of the findings

from the developers.

9 CONCLUSION
Despite being better aligned with security best practises than non-

mHealth apps, suspicious mHealth apps are still accessible on

Google Play and can potentially expose consumers to a wide range

of security issues. App users, clinicians, technology developers, and

policy-makers alike should be cognizant of the uncovered security

issues and weigh them carefully against the benefits of mHealth

apps. To this end, we performed the first comprehensive and in-

depth analysis of mechanisms used by suspicious mHealth apps.

This is the first study to conduct characterization and attribution

of the mHealth apps’ malicious behavior on the Google Play Store.

The study revealed several types of malicious apps, including those

that massively collect and share user information with third-party

servers; apps that usemodified andmalicious libraries; and apps that

embed libraries that illegally harvest user information from legit

libraries. We believe that the toolset developed in this, in particular,

the extraction of EMBER-like features, is a promising alternative

way to complement the literature in analyzing Android applications.

We aim to release our advanced toolset upon publication and share

data with the research community.

REFERENCES
[1] [n.d.]. LIEF Documentation - Android formats and the API to use them. https:

//lief-project.github.io/doc/latest/tutorials/10_android_formats.html.

[2] 1byone. [n.d.]. 1byone Health. https://play.google.com/store/apps/details?id=

com.quhwa.health.

[3] Airnow. [n.d.]. Airnow. https://airnowmonetization.com

[4] Najd Alfawzan, Markus Christen, Giovanni Spitale, and Nikola Biller-Andorno.

2022. Privacy, Data Sharing, and Data Security Policies of Women’s mHealth

Apps: Scoping Review and Content Analysis. JMIR Mhealth Uhealth 10, 5 (6 May

2022).

[5] Hyrum S Anderson and Phil Roth. 2018. Ember: an open dataset for training

static pe malware machine learning models. arXiv preprint arXiv:1804.04637
(2018).

[6] Apktool. [n.d.]. Apktool. https://ibotpeaches.github.io/Apktool/

[7] AppsVision. [n.d.]. COMM. https://play.google.com/store/apps/details?id=com.

appsvision.comm.

[8] AppsVision. [n.d.]. Institut O’plaisir. https://play.google.com/store/apps/details?

id=com.appsvision.institutoplaisir

[9] AppsVision1. [n.d.]. Cellu hit. https://play.google.com/store/apps/details?id=

com.appsvision.celluhit

[10] AppsVision3. [n.d.]. OPTIKONCEPT. https://play.google.com/store/apps/details?

id=com.appsvision.optikoncept

[11] AppsVision4. [n.d.]. Smoke’n Vap’z. https://play.google.com/store/apps/details?

id=com.appsvision.smokenvapz

[12] AppsVision5. [n.d.]. Spa Thérapie. https://play.google.com/store/apps/details?

id=com.appsvision.spatherapie

[13] AppsVision6. [n.d.]. Vap’Pause. https://play.google.com/store/apps/details?id=

com.appsvision.vappause

[14] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,

and CERT Siemens. 2014. Drebin: Effective and explainable detection of android

malware in your pocket.. In Ndss, Vol. 14. 23–26.
[15] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.

Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint

analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.
[16] AttenTS. [n.d.]. Cara Gaya Renang. https://play.google.com/store/apps/details?

id=com.caragayarenang.atten.

[17] AttenTS. [n.d.]. Cara Latihan Badminton. https://play.google.com/store/apps/

details?id=com.caralatihanbadminton.atten.

[18] AttenTS. [n.d.]. Cara Menghilangkan Jerawat. https://play.google.com/store/

apps/details?id=com.caramenghilangkanjerawat.atten.

[19] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. Pscout:

analyzing the android permission specification. In Proceedings of the 2012 ACM
conference on Computer and communications security. 217–228.

[20] Maged N Kamel Boulos, Ann C Brewer, Chante Karimkhani, David B Buller,

and Robert P Dellavalle. 2014. Mobile medical and health apps: state of the art,

concerns, regulatory control and certification. Online J. Public Health Inform. 5, 3
(2014).

[21] BouncyCastle. [n.d.]. Raccoon – The APK Donwloader. https://raccoon.onyxbits.

de/

[22] Sun Caijun, Zhang Hua, Qin Sujuan, He Nengqiang, Qin Jiawei, and Pan Hongwei.

2018. DexX: A Double Layer Unpacking Framework for Android. IEEE Access
(2018).

[23] N. Chau and S. Jung. 2019. An Entropy-Based Solution for Identifying Android

Packers. IEEE Access (2019).
[24] Caleb Chen. 2020. Android community worried about presence of

"Chinese spyware" by Qihoo 360 in Samsung smartphones and tablets.

https://www.privateinternetaccess.com/blog/android-community-worried-

about-presence-of-chinese-spyware-by-qihoo-360-in-samsung-smartphones-

and-tablets/

[25] Nathan Collier. 2021. Pre-installed auto installer threat found on Android mobile

devices in Germany. https://www.malwarebytes.com/blog/news/2021/04/pre-

installed-auto-installer-threat-found-on-android-mobile-devices-in-germany.

Last accessed: 10/08/2022.

[26] Tobias Dehling, Fangjian Gao, Stephan Schneider, and Ali Sunyaev. 2015. Explor-

ing the Far Side of Mobile Health: Information Security and Privacy of Mobile

Health Apps on iOS and Android. JMIR Mhealth Uhealth 3, 1 (Jan. 2015), e8.

[27] Android Developer. 2020. The Android NDK: toolset that lets you implement parts
of your app in native code, using languages such as C and C++.

[28] Digital.ai. 2020. Arxan: App code obfuscation. https://digital.ai/glossary/app-

code-obfuscation. Last accessed: 18/08/2021.

[29] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin, Xiaorui Pan, Tongxin

Li, XueqiangWang, and XiaoFengWang. 2018. Things You May Not Know About

Android (Un)Packers: A Systematic Study based on Whole-System Emulation. In

NDSS.
[30] Nguyen Viet Duc, Pham Thanh Giang, and Pham Minh Vi. 2015. Permission

Analysis for Android Malware Detection. In The Proceedings of the 7th VAST-AIST
Workshop “Research Collaboration: Review and perspective.

[31] F-Secure. 2017. F-Secure -Threat Description - Riskware:Android/SmsReg. https:

//www.f-secure.com/sw-desc/riskware_android_smsreg.shtml.

[32] Caleb Fenton. 2016. Building with and Detecting Android’s Jack Compiler.
[33] Fmind. [n.d.]. fmind/euphony. https://github.com/fmind/euphony

[34] US Food and Drug Administration. 2019. Policy for Device Software Functions

and Mobile Medical Applications. https://www.fda.gov/media/80958/download

[35] Fortiguard. 2017. Fortiguard labs - Threat Encyclopedia - Android/SMSreg.ZI!tr.

https://www.fortiguard.com/encyclopedia/mobile/7294379/android-smsreg-zi-

tr.

[36] Fortinet. 2021. Fortiguard labs - Threat Encyclopedia - Adware/RevMob. https:

//www.fortiguard.com/encyclopedia/mobile/7016460/adware-revmob. Last ac-

cessed: 10/08/2022.

[37] Marco Grewenig. [n.d.]. BMI Calculator. https://play.google.com/store/apps/

details?id=de.grewe.android.bmi.

[38] Marco Grewenig. [n.d.]. Calorie Calculator BMR BMI ads. https://play.google.

com/store/apps/details?id=de.grewe.android.caloriecalculatorfree.

[39] Guardsquare-Mobile-Application-Protection. 2020. Dexguard: Android App Secu-
rity - Protecting Android applications and SDKs against reverse engineering and
hacking.

[40] Ren He, Haoyu Wang, Pengcheng Xia, Liu Wang, Yuanchun Li, Lei Wu, Yajin

Zhou, Xiapu Luo, Yao Guo, and Guoai Xu. 2020. Beyond the Virus: A First Look

at Coronavirus-themed Mobile Malware. arXiv:2005.14619 [cs.CR]

[41] Médéric Hurier, Guillermo Suarez-Tangil, Santanu Kumar Dash, Tegawendé F

Bissyandé, Yves Le Traon, Jacques Klein, and Lorenzo Cavallaro. 2017. Euphony:

Harmonious unification of cacophonous anti-virus vendor labels for Android

malware. In MSR.
[42] Muhammad Ikram and Mohamed Ali Kaafar. 2017. A first look at mobile ad-

blocking apps. In NCA. IEEE, 1–8.
[43] Muhammad Ikram, Rahat Masood, Gareth Tyson, Mohamed Ali Kaafar, Noha

Loizon, and Roya Ensafi. 2019. The chain of implicit trust: An analysis of the web

third-party resources loading. In The World Wide Web Conference. 2851–2857.
[44] Muhammad Ikram, Narseo Vallina-Rodriguez, Suranga Seneviratne,MohamedAli

Kaafar, and Vern Paxson. 2016. An analysis of the privacy and security risks

of android VPN permission-enabled apps. In Proceedings of the 2016 Internet
Measurement Conference. 349–364.

[45] Mansoor Iqbal. [n.d.]. App download and usage statistics. https://www.

businessofapps.com/data/app-statistics/

[46] Jean-Yves Jenny. 2013. Measurement of the knee flexion angle with a Smartphone-

application is precise and accurate. J. Arthroplasty 28, 5 (May 2013), 784–787.

https://lief-project.github.io/doc/latest/tutorials/10_android_formats.html
https://lief-project.github.io/doc/latest/tutorials/10_android_formats.html
https://play.google.com/store/apps/details?id=com.quhwa.health
https://play.google.com/store/apps/details?id=com.quhwa.health
https://airnowmonetization.com
https://ibotpeaches.github.io/Apktool/
https://play.google.com/store/apps/details?id=com.appsvision.comm
https://play.google.com/store/apps/details?id=com.appsvision.comm
https://play.google.com/store/apps/details?id=com.appsvision.institutoplaisir
https://play.google.com/store/apps/details?id=com.appsvision.institutoplaisir
https://play.google.com/store/apps/details?id=com.appsvision.celluhit
https://play.google.com/store/apps/details?id=com.appsvision.celluhit
https://play.google.com/store/apps/details?id=com.appsvision.optikoncept
https://play.google.com/store/apps/details?id=com.appsvision.optikoncept
https://play.google.com/store/apps/details?id=com.appsvision.smokenvapz
https://play.google.com/store/apps/details?id=com.appsvision.smokenvapz
https://play.google.com/store/apps/details?id=com.appsvision.spatherapie
https://play.google.com/store/apps/details?id=com.appsvision.spatherapie
https://play.google.com/store/apps/details?id=com.appsvision.vappause
https://play.google.com/store/apps/details?id=com.appsvision.vappause
https://play.google.com/store/apps/details?id=com.caragayarenang.atten
https://play.google.com/store/apps/details?id=com.caragayarenang.atten
https://play.google.com/store/apps/details?id=com.caralatihanbadminton.atten
https://play.google.com/store/apps/details?id=com.caralatihanbadminton.atten
https://play.google.com/store/apps/details?id=com.caramenghilangkanjerawat.atten
https://play.google.com/store/apps/details?id=com.caramenghilangkanjerawat.atten
https://raccoon.onyxbits.de/
https://raccoon.onyxbits.de/
https://www.privateinternetaccess.com/blog/android-community-worried-about-presence-of-chinese-spyware-by-qihoo-360-in-samsung-smartphones-and-tablets/
https://www.privateinternetaccess.com/blog/android-community-worried-about-presence-of-chinese-spyware-by-qihoo-360-in-samsung-smartphones-and-tablets/
https://www.privateinternetaccess.com/blog/android-community-worried-about-presence-of-chinese-spyware-by-qihoo-360-in-samsung-smartphones-and-tablets/
https://www.malwarebytes.com/blog/news/2021/04/pre-installed-auto-installer-threat-found-on-android-mobile-devices-in-germany
https://www.malwarebytes.com/blog/news/2021/04/pre-installed-auto-installer-threat-found-on-android-mobile-devices-in-germany
https://digital.ai/glossary/app-code-obfuscation
https://digital.ai/glossary/app-code-obfuscation
https://www.f-secure.com/sw-desc/riskware_android_smsreg.shtml
https://www.f-secure.com/sw-desc/riskware_android_smsreg.shtml
https://github.com/fmind/euphony
https://www.fda.gov/media/80958/download
https://www.fortiguard.com/encyclopedia/mobile/7294379/android-smsreg-zi-tr
https://www.fortiguard.com/encyclopedia/mobile/7294379/android-smsreg-zi-tr
https://www.fortiguard.com/encyclopedia/mobile/7016460/adware-revmob
https://www.fortiguard.com/encyclopedia/mobile/7016460/adware-revmob
https://play.google.com/store/apps/details?id=de.grewe.android.bmi
https://play.google.com/store/apps/details?id=de.grewe.android.bmi
https://play.google.com/store/apps/details?id=de.grewe.android.caloriecalculatorfree
https://play.google.com/store/apps/details?id=de.grewe.android.caloriecalculatorfree
https://arxiv.org/abs/2005.14619
https://www.businessofapps.com/data/ app-statistics/
https://www.businessofapps.com/data/ app-statistics/

Auditing and Attributing Behaviours of Suspicious Android Health Applications Conference’17, July 2017, Washington, DC, USA

[47] Ryan Johnson, Zhaohui Wang, Corey Gagnon, and Angelos Stavrou. 2012. Anal-

ysis of android applications’ permissions. In 2012 IEEE Sixth International Confer-
ence on Software Security and Reliability Companion. IEEE, 45–46.

[48] Misha Kay, Jonathan Santos, and Marina Takane. 2011. mHealth: New horizons

for health through mobile technologies. World Health Organization 64, 7 (2011).

[49] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla Bilge, and Engin

Kirda. 2015. Cutting the gordian knot: A look under the hood of ransomware

attacks. In International conference on detection of intrusions and malware, and
vulnerability assessment. Springer, 3–24.

[50] Leadbolt. 2021. Leadbolt - High Performance Mobile Advertising. https://www.

leadboltapps.com/. Last accessed: 10/08/2022.

[51] Jiunn-Jyh Lin. [n.d.]. Production and sales history traceability number query

(agricultural products, food), safety traceability, production traceability. https:

//play.google.com/store/apps/details?id=com.xcodeon.android.foodtraceability

[52] Iryna Lukashuk. [n.d.]. Google Play Store changes 2022: what to expect? https:

//appradar.com/blog/google-play-store-changes-2022 published : June 14, 2022 ,

last access: August 2022.

[53] Malicialab. 2020. malicialab/avclass. https://github.com/malicialab/avclass

[54] Sapna Malik and Kiran Khatter. 2016. Behaviour Analysis of Android Application.

IJCTA 9, 10 (2016).

[55] Malwarebyte. 2019. Malwarebyte Forum - An-

droid/PUP.Riskware.SMSreg.WWPA. https://forums.malwarebytes.com/

topic/249727-androidpupriskwaresmsregwwpa/.

[56] Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven

Bethard, and David McClosky. 2014. The Stanford CoreNLP natural language

processing toolkit. In Proceedings of 52nd annual meeting of the association for
computational linguistics: system demonstrations. 55–60.

[57] Microsoft. 2021. Microsoft Security Intelligence -

PUA:AndroidOS/SMSReg.I!MTB. https://www.microsoft.com/en-

us/wdsi/threats/malware-encyclopedia-description?Name=PUA:AndroidOS/

SMSReg.I!MTB&threatId=324027.

[58] mitmproxy. [n.d.]. https://mitmproxy.org

[59] molinoapp. [n.d.]. TeleEmergencias. https://play.google.com/store/apps/details?

id=com.ApkCGL.teleemergencia.

[60] MonkeyRunner. [n.d.]. monkeyrunner: Android Developers. https://developer.

android.com/studio/test/monkeyrunner

[61] Jannis Müthing, Raphael Brüngel, and Christoph M Friedrich. 2019. Server-

Focused Security Assessment ofMobile Health Apps for PopularMobile Platforms.

J Med Internet Res 21, 1 (23 Jan 2019).

[62] Rahul Nair. 2015. Techbliss - Tutorial Anti-Disassembly techniques used by malware
(a primer).

[63] Andréa A G Nes, Sandra van Dulmen, Erlend Eide, Arnstein Finset, Olöf Birna

Kristjánsdóttir, Ida Synnøve Steen, and Hilde Eide. 2012. The development and

feasibility of a web-based intervention with diaries and situational feedback

via smartphone to support self-management in patients with diabetes type 2.

Diabetes Res. Clin. Pract. 97, 3 (Sept. 2012), 385–393.
[64] Ammar Odeh, Ismail Keshta, Abobakr Aboshgifa, and Eman Abdelfattah. 2022.

Privacy and Security in Mobile Health Technologies: Challenges and Concerns.

In CCWC.
[65] Marten Oltrogge, Erik Derr, Christian Stransky, Yasemin Acar, Sascha Fahl, Chris-

tian Rossow, Giancarlo Pellegrino, Sven Bugiel, and Michael Backes. 2018. The

Rise of the Citizen Developer: Assessing the Security Impact of Online App

Generators. In 2018 IEEE Symposium on Security and Privacy (SP).
[66] S O’Neill and R R W Brady. 2012. Colorectal smartphone apps: opportunities and

risks. Colorectal Dis. 14, 9 (Sept. 2012), e530–4.
[67] D Orange. [n.d.]. Fit Bites. https://play.google.com/store/apps/details?id=com.

fit.bites

[68] OWASP. 2020. Testing Anti-Debugging Detection (MSTG-RESILIENCE-2) - Android
Anti-Reversing Defenses. OWASP Mobile Security Guide - Accessed: 18/01/2020.

[69] OWASP. 2020. Testing Emulator Detection (MSTG-RESILIENCE-5) - Android Anti-
Reversing Defenses. OWASP Mobile Security Guide - Accessed: 18/01/2020.

[70] Achilleas Papageorgiou, Michael Strigkos, Eugenia Politou, Efthimios Alepis,

Agusti Solanas, and Constantinos Patsakis. 2018. Security and Privacy Analysis

of Mobile Health Applications: The Alarming State of Practice. IEEE Access 6
(2018).

[71] Achilleas Papageorgiou, Michael Strigkos, Eugenia Politou, Efthimios Alepis,

Agusti Solanas, and Constantinos Patsakis. 2018. Security and privacy analysis

of mobile health applications: the alarming state of practice. IEEE Access 6 (2018),
9390–9403.

[72] PEARL.GmbH. [n.d.]. simvalley PhoneWatch. https://play.google.com/store/

apps/details?id=de.pearl.px4555.

[73] Charlie Pinder, Jo Vermeulen, Benjamin R Cowan, and Russell Beale. 2018. Digital

behaviour change interventions to break and form habits. TOCHI 25, 3 (2018).
[74] Body Program. [n.d.]. Learn To Do Pull-Ups. https://play.google.com/store/apps/

details?id=bppullups.apps.com.

[75] Body Program. [n.d.]. Minute Super Plank Workout. https://play.google.com/

store/apps/details?id=bpsplankw.apps.com.

[76] T E Schap, F Zhu, E J Delp, and C J Boushey. 2014. Merging dietary assessment

with the adolescent lifestyle. J. Hum. Nutr. Diet. 27 Suppl 1 (2014), 82–88.
[77] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Caballero. 2016. Av-

class: A tool for massive malware labeling. In RAID.
[78] Rednaga Security. 2016. APKiD and Android Compiler Fingerprinting.
[79] Rednaga Security. 2016. Detecting Pirated andMalicious Android Apps with APKiD.
[80] I. Wayan Budi Sentana., Muhammad Ikram., Mohamed Kaafar., and Shlomo

Berkovsky. 2021. Empirical Security and Privacy Analysis of Mobile Symptom

Checking Apps on Google Play. In Proceedings of the 18th International Conference
on Security and Cryptography - SECRYPT,.

[81] Arjun Sha. [n.d.]. APK vs AAB (Android App Bundles): Everything You Need to

Know! https://beebom.com/apk-vs-aab/ published : July 5, 2021 , last access:

August 2022.

[82] SIMFORM. 2015. How to avoid reverse engineering of your android app?
[83] David Smahel, Steriani Elavsky, and Hana Machackova. 2019. Functions of

mHealth applications: A user’s perspective. HIJ 25, 3 (2019).
[84] Google Source. 2020. Android Clang/LLVM Prebuilts. https://android.

googlesource.com/platform/prebuilts/clang/host/linux-x86/+/master/README.

md. Last accessed: 18/08/2021.

[85] Soylentnews.org. 2020. Samsung Devices Allegedly Use Qihoo 360 Spyware

to Phone Home to China. https://www.newsbreak.com/news/1486552211048/

samsung-devices-allegedly-use-qihoo-360-spyware-to-phone-home-to-china

[86] Gioacchino Tangari, Muhammad Ikram, Kiran Ijaz, Mohamed Ali Kaafar, and

Shlomo Berkovsky. 2021. Mobile health and privacy: cross sectional study. British
Medical Journal 373 (June 2021), n1248.

[87] Gioacchino Tangari, Muhammad Ikram, I Wayan Budi Sentana, Kiran Ijaz, Mo-

hamed Ali Kaafar, and Shlomo Berkovsky. 2021. Analyzing security issues of

android mobile health and medical applications. Journal of American Medical
and Informatics Association 28, 10 (Sept. 2021), 2074–2084.

[88] Senssun Technologies. [n.d.]. BodyMonitor. https://play.google.com/store/apps/

details?id=com.senssun.bodymonitor.

[89] Kevin Townsend. 2020. Threat From Pre-Installed Malware on Android Phones

is Growing. https://www.securityweek.com/threat-pre-installed-malware-

android-phones-growing. Last accessed: 10/08/2022.

[90] VirusTotal. [n.d.]. https://www.virustotal.com/gui/home/upload

[91] Jice Wang, Yue Xiao, Xueqiang Wang, Yuhong Nan, Luyi Xing, Xiaojing Liao,

JinWei Dong, Nicolas Serrano, Haoran Lu, XiaoFeng Wang, and Yuqing Zhang.

2021. Understanding Malicious Cross-library Data Harvesting on Android. In

USENIX Security Symposium.

[92] Dr Web. 2021. Adware.Leadbolt.24 Technical Information. https://vms.drweb.

com/virus/?i=24980493&lng=en. Last accessed: 10/08/2022.

[93] Yajin Zhou and Xuxian Jiang. 2012. Dissecting android malware: Characterization

and evolution. In 2012 IEEE symposium on security and privacy. IEEE, 95–109.

A EVASIVE AND OBFUSCATION METHODS
In this section, we provide details about the six different types of

evasion techniques employed by mHealth apps. For each applica-

tion, we use APKiD2 tool to obtain a list anti-analysis techniques

such as “manipulator”, “anti-virtual machine”, “anti-debug”, “anti-

disassembly”, “obfuscator”, and “packer”.

Binary Protection Type0
20
40
60
80

100
120
140
160

of

 A
pp

s

2 3 9

40

71

164
Packer
Obfuscator
Anti Disassembly
Manipulator
Anti Debug
Anti VM

Figure 5: Distribution of protection and hiding mechanims
employed by the analysed suspicious mHealth apps.

Manipulator. We found that 40 (10.5%) apps are marked as

containing manipulator because the Dalvik Executable (.dex) files

2
https://github.com/rednaga/APKiD

https://www.leadboltapps.com/
https://www.leadboltapps.com/
https://play.google.com/store/apps/details?id=com.xcodeon.android.foodtraceability
https://play.google.com/store/apps/details?id=com.xcodeon.android.foodtraceability
https://appradar.com/blog/google-play-store-changes-2022
https://appradar.com/blog/google-play-store-changes-2022
https://github.com/malicialab/avclass
https://forums.malwarebytes.com/topic/249727-androidpupriskwaresmsregwwpa/
https://forums.malwarebytes.com/topic/249727-androidpupriskwaresmsregwwpa/
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PUA:AndroidOS/SMSReg.I!MTB&threatId=324027
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PUA:AndroidOS/SMSReg.I!MTB&threatId=324027
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PUA:AndroidOS/SMSReg.I!MTB&threatId=324027
https://mitmproxy.org
https://play.google.com/store/apps/details?id=com.ApkCGL.teleemergencia
https://play.google.com/store/apps/details?id=com.ApkCGL.teleemergencia
https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/studio/test/monkeyrunner
https://play.google.com/store/apps/details?id=com.fit.bites
https://play.google.com/store/apps/details?id=com.fit.bites
https://play.google.com/store/apps/details?id=de.pearl.px4555
https://play.google.com/store/apps/details?id=de.pearl.px4555
https://play.google.com/store/apps/details?id=bppullups.apps.com
https://play.google.com/store/apps/details?id=bppullups.apps.com
https://play.google.com/store/apps/details?id=bpsplankw.apps.com
https://play.google.com/store/apps/details?id=bpsplankw.apps.com
https://beebom.com/apk-vs-aab/
https://android.googlesource.com/platform/prebuilts/clang/host/linux-x86/+/master/README.md
https://android.googlesource.com/platform/prebuilts/clang/host/linux-x86/+/master/README.md
https://android.googlesource.com/platform/prebuilts/clang/host/linux-x86/+/master/README.md
https://www.newsbreak.com/news/1486552211048/samsung-devices-allegedly-use-qihoo-360-spyware-to-phone-home-to-china
https://www.newsbreak.com/news/1486552211048/samsung-devices-allegedly-use-qihoo-360-spyware-to-phone-home-to-china
https://play.google.com/store/apps/details?id=com.senssun.bodymonitor
https://play.google.com/store/apps/details?id=com.senssun.bodymonitor
https://www.securityweek.com/threat-pre-installed-malware-android-phones-growing
https://www.securityweek.com/threat-pre-installed-malware-android-phones-growing
https://www.virustotal.com/gui/home/upload
https://vms.drweb.com/virus/?i=24980493&lng=en
https://vms.drweb.com/virus/?i=24980493&lng=en

Conference’17, July 2017, Washington, DC, USA Salman et al.

developed using dexmerge compiler. Note that .dex file, which exists

in each APK, is a byte-code file converted from Java.class. Thus, it
can be executed by the devices. Originally, dex file was developed
using dx or r8 compiler. APKiD tool will mark an app as containing

manipulator if (i) the original .dex files of the app are modified

using a modification library such as dexmerge or (ii) .dex files are
created from reverse-engineered source code using dexlib library,
which is commonly used by decompiler tools such as apktool or

smali [78, 79]. APKiD tool identifies the manipulator by analyzing

the change history in Map Ordering Type of the .dex files since the
code sequence resulted from original .dex compiler, dexmerge, dexlib
or dex2lib is different [32].

Anti Virtual Machine.We detected 164 (43.04%) apps adopt-

ing anti-virtual machine (anti-vm) analysis in their packages.

Anti-vm is a mechanism to detect whether the apps are exe-

cuted on an emulator or a real device. The goal is to impede

reverse-engineering tools and techniques so the reverse engineer

cannot get the source code easily. The most common mecha-

nism to check whether the device is emulated [69] is to ana-

lyze build.prop file containing a list of Build API methods, in-

cluding Build.Fingerprint, Build.Hardward, Build.Device and other

device’s properties. An alternative method is to check the Tele-
phony manager which contains fixed API values for Android

emulators including getNetworkType(), getNetworkOperator(),
getPhoneType() and other network-related properties.

Anti Debug. We found 71 (18.63%) apps leveraging anti-

debugging techniques to disrupt reverse engineering of their source

code. Anti-debugging technique ensures that the apps do not run

under a debugger or change the app’s behaviour when running un-

der the debugger mode. Android provides two levels of debugging

and anti-debugging protocol [68]. The first debugging level can be

conducted in communication protocol between Java Virtual Ma-

chine and debugger using Java Debug Wire Protocol (JDWP). We

can identify anti-debugging by verifying if the setup includes the

debuggable flag in ApplicationInfo or by checking the timer checks
routine. In contrast, the next level of anti-debugging technique is to

conduct traditional debugging by using ptrace in Linux system call.
In this research, we found all of the mHealth apps activating the

debugable flag of Debug.isDebuggerConnected() check, which
is part of the JDWP anti-debug level.

Obfuscator. An app developer commonly uses an obfuscator

to protect intellectual property or trade secrets and prevent an

attacker from reverse engineering a proprietary software program

by encrypting some or all of the program’s code. There are several

popular obfuscator tools, including Dexguard [39], Arxan [28], and

Clang [84]. Dexguard is a proprietary Android obfuscation tool

that provides multi-layer protection against the static and dynamic

analysis of byte-code, manifest, and all other resources included in

distribution packages. While Dexguard obfuscated the byte-code

level of Android Apps, Arxan and Clang are categorized as Low-

Level Virtual Machine tools that obfuscate the binary code level

of Android Apps. In this study, we found that APKID detected 3

(0.78%) apps leveraging obfuscator tools, where 2 of them were

obfuscated using Low-Level Virtual Machine Tools (LLVM) such as

Clang, and the rest are unidentified.

Anti Disassembly. This technique prevents the reverse engi-
neer from disassembling the byte-code into higher-level code such

as Java or Smali. The most popular anti-disassembly mechanism

in Android is by developing part of the code segment in C or C++

using the Native Development Kit (NDK) [82]. NDK provides plat-

form libraries to manage native activities and access physical device

components [27]. NDK uses CMake as a native library compiler that

creates a different byte-code structure compared to the code written

in Java or Kotlin. Hence, it impedes common Android tools such as

Apktool or Smali from disassembling the byte-code. It required an

advanced reverse engineer familiar with the ARM processor archi-

tecture, Assembler language, Java Native Interface (JNI) convention,

and Application Binary Interface (ABI) compiler to decompile the

byte-code. Malware developers use more advanced techniques to

evade disassembly tools, as explained by [62]. The technique is

leveraging jmp and call commands in byte-code level to direct the

instruction flow to a particular location with a constant value or

direct the flow to the exact target memory location. This technique

will produce an incorrect source code listing when it is disassem-

bled using a decompiler tool. We found 9 (2.3%) apps leveraging

the anti-disassembly techniques. Analysis of those apps returns the

value “Illegal class name”, indicating the decompiler result violates

the standard structure of Java or Kotlin.

Packer. Initially, Packer was created to protect intellectual prop-
erty in the form of source code onAndroid apps. These tools prevent

third parties from analyzing source code or doing reverse engineer-

ing. Packer works by encrypting the .dex files in the Android

package and storing the encryption results in a secure new block

architecture. Unlike the obfuscator, which will be decrypted when

executed on the device, the packer remains stored in the packer

block and uses unpacker when executed on the device. However,

malware developers often use commercial packers to hide malicious

codes [22, 29]. Research in [29] shows that several commercial pack-

ers are abused to encrypt malicious code in apps. Research on [22]

also explains how packers are used to deceive Google Play Store

scans so that reproducible malware called Expensive Wall is em-

bedded in one of the apps in the apps market. In this research, we

found that 2 (0.5%) mHealth apps leverage "Jiagu" packer.

Based on the analysis result and considering the malware self-

protection behaviour claim in [40], we believe that mHealth sus-

picious apps have different behaviour. Except for anti-virtual ma-

chines, suspicious mHealth apps adopting other binary protector

mechanisms have less than 50%. Implementing anti-VM is straight-

forward since several Software Development Kits (SDK) have in-

cluded it in their systems. But adopting the other mechanism, such

as obfuscation, might take more effort and investment. Since the

mHealth apps are not considered potentially profitable for con-

ducting a crime, we suspect that the app’s developer exploits the

mHealth apps to launch more ad-related libraries. That is aligned

with the type of malicious library detected by Virus Total in Table 2.

As a note, we believe several results provided by APKId, such as

the obfuscation mechanism, are considered to be the lower-bound

results because, based on our static analysis, we found at least 16

apps leveraging the Airpush and eight apps leveraging the LeadBolt

library (see Table 4) are obfuscated by renaming the library’s name.

This is because APKId conducted fingerprinting based on a popular

obfuscator whitelist and byte-level analysis, which can be easily

missed through simple renaming techniques.

	Abstract
	1 Introduction
	2 Overview of Mobile Health Application
	2.1 Types of mHealth Apps

	3 Data and Analysis Methodology
	4 Characterizing Malware Families
	5 Suspicious Behaviour Attribution
	5.1 Misusing Permissions for Potential Exploits
	5.2 Abusing Third-Party Libraries Privilege
	5.3 Piggybacking Online App Generators (OAGs)
	5.4 Information Harvesting and Sharing
	5.5 Cross Library Data Harvesting
	5.6 Adopting Evasive and Obfuscation Methods
	5.7 Byte Entropy Analysis

	6 Status Quo and User Awareness
	7 Related Works
	8 Discussion and Responsible Disclosure
	9 Conclusion
	References
	A Evasive and Obfuscation Methods

