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Why we need enriched 
cybersecurity dataset? Costs

• In 2015 cyber attacks cost businesses as much as $400 billion a year 
• From 2013 to 2015 the cyber crime costs quadrupled

• Cost of data breaches will increase to $2.1 trillion globally by 2019

• The average cost of one cyber breach 
• $4 million globally 
• $7 million in the United States

• One cyberattack can result in millions of dollars in expenses:
• < 30 days to contain a cyberattack, the average cost is $7.7 million
• > 90 days, the average cost is $12.2 million
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Insights: How we collect 
cybersecurity data at scale? 
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Step 1. Collecting reported malicious activities from seed blacklists and VirusTotal
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How we enrich cybersecurity data at 
scale? 
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Step 2. Leverage additional datasets (e.g., 
BGP Routeview and Potaroo) to enrich 
malicious activities dataset
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What do we have in our enriched  
cybersecurity data? Example
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Retrospective Analysis of Internet Malware Sources WWW’18, July 2018, Lyon, France

(a) Overall Methodology (b) Data Augmentation

Figure 1: Overview of our data acquisition and augmentation methodology. (??) With our custom-built Internet WayBack Machine
crawlers and data-processing scripts, we continuously enrich our datasets of malicious activities. (??) Colors represent different
datasets to enrich the domain associated to malicious activity in our dataset. [Using different colors and annotations, clarify the enrich-
ment process and field extract and mapped to get the final dataset. —IK]

2007 to 2017). A detailed description of these sources is depicted by
Table ??.

Limitations: Despite our best efforts to collect the most compre-
hensive set of data sources to perform our study, there are still some
limitations worth mentioning.

First, we consider a source (or a host) to be an IP address and map
more fine grained information such as domains and URLs to an IP.
While an IP address can be home for different services (malicious an
not malicious), we do not make such distinction unless specifically
stated. This is mainly due to the fact that most datasets used for
augmenting our data rely only on IPs. Second, as Internet Wayback
Machine respects Robots exclusion standard, certain blacklisting
services such as Spamhaus PBL6 were not crawled and hence were
excluded from our datasets due to the lack of historical data. Finally,
BGP provides partial information about few ASes making mapping
IPs to these ASes impossible. However, this behavior is extremely
limited and hence should not affect our results.

3 CHARACTERIZATION OF ATTACKS
In this section, we analyze the accumulated dataset (cf. Section ??).
[@Ikram, briefly mention the subsections. —IK]

3.1 Classifying Attacks
Our dataset is composed of a myriad of malicious activities. Indeed,
70% of all reported malicious activities in our dataset are labeled by
their respective data-sources and classified in one of 4,918 unique
attack labels. Table ?? lists the labels in descending order of their
frequency. A careful analysis of these labels shows that the disparity
between labels can be reduced by only taking into account the end-
goal or motivation of the adversary. Based on this observation, we
classified each activity in one of six classes that we refer to as
malicious class:

Exploits. Exploits take advantage of vulnerabilities in software,
which may or may not be publicly-known, to (remotely) execute
code on the victim’s system. Exploit kit are usually used as a first
stage “dropper” followed by the installation of the final payload (i.e.,
malware). This category includes websites and IP addresses that are
used for that matter.

6https://www.spamhaus.org/pbl/

Malware. It includes websites and IP addresses that host or dis-
tribute malicious payload such as trojans, viruses, worms, and ran-
somware.

Fraudulent Services. Websites and IP addresses engaged in the
distribution or provisioning of bogus or fraudulent services/applica-
tion such as the promotion of comments, likes, ratings, votes or any
variations thereof. [add references (papers) —BERI]

Spammers. This class contains websites and IP addresses that
host spam-bots to perform astroturfing (grass roots marketing) [add
ref —BERI] or to send large-scale, unsolicited email or instant mes-
sages.

Phishing. It is composed of websites and IP addresses that hosts
content aimed at obtaining sensitive information by disguising as
trustworthy, known online services.

Unwanted Application Programs (PUP). These include web-
site or IP addresses that are involved in provisioning or distributing
bogus software such as free screen-savers or fake anti-virus scanners
that surreptitiously generate advertisements or perform redirection
to collect user credentials or personal identifiable information.

[the following sentence should be placed somewhere else... —
BERI] Table ?? shows the distribution of attacks classes in our
datasets. Two-third (64%) of the reported attacks belong to “malware”
class while about 0.17% of the attacks belong to “spammers”.

3.2 Overlap Between Data Sources
[Jaccard tables were moved to table_overlap. @Ikram/Ben: please
change tables to a heat-map. The plot should have the 3 plots side
by side. They should share the y axis (name of the list) and the x axis
should be omitted for clarity. —BERI]

A first step to asses the diversity of malicious activities is to com-
pare all the data sources we collected. To do so, we use the Jaccard
similarity index. This index denoted � is computed for two stets A
and B as |A–

B |
|A—

B | and ranges from zero for no common elements
between the sets to one for a perfect match. Figure XXX shows �

value for domain name, second level domain name and IP addresses
respectively. We observer that the vast majority of � values are close
to zero indicating very small overlap between sets. This observation
echoes previous findings [add the paper analyzing blacklist lists
—BERI] and shows that many sources are highly specialized.A closer
look at higher � values shows that only four pairs have a Jaccard
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We collect 51.6M malicious activities with 15% (7.6M) 
of them are labeled by their respective data sources, 

and the remaining 85% (44M) unlabeled
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Classification Challenge

Challenge: How to label the unlabeled dataset?
15% (7.6M) Labeled Dataset
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Classification Challenge
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The high value of IP a�nity and the lower value of AS (resp.
country) a�nity suggest that PUP uses multiple IPs from a small
number of AS (resp. country) to in�ict PUP class of Mal-Activities.

Next, we measure the entropy of a host (i.e. IP, AS and country)
to identify whether there are hosts that are specialized to distribute
a certain class of Mal-Activities.

Specialization. The distribution of hosts across classes of Mal-
Activities is de�ned as normalized Entropy per host h as S(h) =
(�Õ

8a P(h) log2 P(h))/log2 k , where k is the number of activities
for host, h, and the probability P(h) is de�ned as:

P(h) = # of reports from host h with activity a
Total # of reports for host h

(2)

Strong specialization of hosting one particular Mal-ctivity class is
represented by higher S(h) value for a given host h.

Figure 3: IPs, ASes, and Countries Specialization

From Figure 3, we observe that 80% of IPs exclusively participate
in one class of Mal-Activities. When we analyze Mal-Activities at
the AS and country level, we observe a more uniform distribution
of the Mal-Activities within the hosts (i.e., ASes and countries).
We determine that 80% of countries participate in more than one
class of Mal-Activities while 55% of ASes participate in only one
class of Mal-Activities. We note that 0.04% (311) of IPs, 27.4% (54)
of countries, 2.12% (275) of ASes participate all six classes. On
closer look, we found that 96.8% of IPs, 87.7% of ASes and 74.4% of
countries have an entropy value at most 0.50. This suggests that a
substantial number of hosts will be biased toward one class of its
Mal-Activities.

4 TEMPORAL ANALYSIS
We now focus on the temporal evolution of Mal-Activities as re-
ported since January 2007.

4.1 Evolution of Mal-Activities
We analyze the cumulative volume of categories of Mal-Activities
in our dataset over time in Figure 4(a) (Note the y-axis log scale).
We also show the time coverage for our seed blacklists datasets in
Figure 4(b).

Perhaps not surprisingly, we observe that reportedMal-Activities
have been steadily increasing in volume over the last decade (The
Solid line in the Figures shows the cumulative total number of
repots), with an interesting spike around late 2008 driven by the
inception of Fraudulent services and Exploit kits. One of the earliest
kits was MPack[53], a very popular “user-friendly” Exploit kit and
was introduced 2006. Typically, MPack included a collection of PHP
scripts aiming at exploiting Browsers’ security holes and commonly
used programs (e.g., Quicktime). Notably, the Spammers, while
showing not particular peaks, has been continuously and steadily
increasing in volume. The Phishing category has seen two distinct
periods of reporting. First, during 2009 and then in 2013 with an
increase in the total volume of reports by two orders of magnitude.

This is consistent with a report by AO Kastpersky Lab [11] that
points to the growing popularity of digital payments that attracted
an unwanted attention by cybercriminals translated by a dramatic
increase in the number of �nance-related attacks.

(a) Evolution (b) Coverage
Figure 4: Time coverage of blacklists and evolution of Mal-
Activities in our dataset.

4.2 Modeling and analyzing the Churn of
reported IPs

Here, we aim to model occurrences of Mal-Activities in time. More
speci�cally we are interested in understanding the involvement of
hosts into a speci�c malicious activity over time.

The model: Consider a malicious ecosystem with n partici-
pating hosts, where each host i is either alive (i.e., present in the
system) or dead (i.e., logged o�/clean/not reported) at any given
time t . An active host can be reported one or multiple times as
being malicious (denoted k). This behavior can be modeled by an
alternating renewal process Zi (t) for each host i similar to Yao et
al., [59]’s Churn model :

Zi (t) =
8>>><
>>>:
k ,

host i has received
k reports at time t

0, Otherwise
, 1  i  n (3)

where n is the total number of hosts in our dataset and t is in
weeks. Hence, our traces are created by binning the reports into
weeks and per reported host (here host may refer to IP, AS number
or Country of the reported IP).

𝐿𝐿𝑖𝑖,𝑐𝑐+1𝐿𝐿𝑖𝑖,𝑐𝑐 𝐷𝐷𝑖𝑖,𝑐𝑐

𝑍𝑍𝑖𝑖(𝑡𝑡)
𝑡𝑡𝐾𝐾𝑖𝑖,𝑐𝑐

Figure 5: Churn Model. Ki,c is the total number of reports in the
c th period of activity of host i .

Our model is illustrated in Figure 5 where variable c stands
for the cycle number and durations of host i’s ON (life) and OFF
(death) periods are given by random variables Li,c > 0 and Di,c
> 0, respectively. We adopt the same modeling assumptions as
in [59] and assume that all lifetime (i.e., {Li,c8c}) and o�time (i.e.,
{Di,c8c}) are i.i.d. sets of variables. For convenience of notation, we
de�ne the average lifetime as: Li = E[{Li,c8c}] and the average
death time duration as: Di = E[{Di,c8c}].
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To further investigate the diversity of Mal-Activities, we calcu-
late the country a�nity which resulted in an even lower entropy
for PUP (0.105) and the highest entropy for Spammers (0.556). We
observe that US alone contributes 92% of the PUP activity in con-
trast to its contributions of 39% to the Spammers Mal-Activity. We
also note that US contributes 68% of the total Mal-Activities. Over-
all, a 92% of the Spammers Mal-Activities are distributed over 13
countries.

The high value of IP a�nity and the lower value of AS (resp.
country) a�nity suggest that PUP uses multiple IPs from a small
number of AS (resp. country) to in�ict PUP class of Mal-Activities.

Next, we measure the entropy of a host (i.e. IP, AS and country)
to identify whether there are hosts that are specialized to distribute
a certain class of Mal-Activities.

Specialization. The distribution of hosts across classes of Mal-
Activities is de�ned as normalized Entropy per host h as S(h) =
(�Õ

8a P(h) log2 P(h))/log2 k , where k is the number of activities
for host, h, and the probability P(h) is de�ned as:

S(h) = (�
’
8a

P(h) log2 P(h))/log2 k, (2)

P(h) = # of reports from host h with activity a
Total # of reports for host h

(3)

Strong specialization of hosting one particular Mal-ctivity class is
represented by higher S(h) value for a given host h.

Figure 3: IPs, ASes, and Countries Specialization
From Figure 3, we observe that 80% of IPs exclusively participate

in one class of Mal-Activities. When we analyze Mal-Activities at
the AS and country level, we observe a more uniform distribution
of the Mal-Activities within the hosts (i.e., ASes and countries).
We determine that 80% of countries participate in more than one
class of Mal-Activities while 55% of ASes participate in only one
class of Mal-Activities. We note that 0.04% (311) of IPs, 27.4% (54)
of countries, 2.12% (275) of ASes participate all six classes. On
closer look, we found that 96.8% of IPs, 87.7% of ASes and 74.4% of
countries have an entropy value at most 0.50. This suggests that a
substantial number of hosts will be biased toward one class of its
Mal-Activities.

4 TEMPORAL ANALYSIS
We now focus on the temporal evolution of Mal-Activities as re-
ported since January 2007.

4.1 Evolution of Mal-Activities
We analyze the cumulative volume of categories of Mal-Activities
in our dataset over time in Figure 4(a) (Note the y-axis log scale).
We also show the time coverage for our seed blacklists datasets in
Figure 4(b).

Perhaps not surprisingly, we observe that reportedMal-Activities
have been steadily increasing in volume over the last decade (The
Solid line in the Figures shows the cumulative total number of

repots), with an interesting spike around late 2008 driven by the
inception of Fraudulent services and Exploit kits. One of the earliest
kits was MPack[? ], a very popular “user-friendly” Exploit kit and
was introduced 2006. Typically, MPack included a collection of PHP
scripts aiming at exploiting Browsers’ security holes and commonly
used programs (e.g., Quicktime). Notably, the Spammers, while
showing not particular peaks, has been continuously and steadily
increasing in volume. The Phishing category has seen two distinct
periods of reporting. First, during 2009 and then in 2013 with an
increase in the total volume of reports by two orders of magnitude.
This is consistent with a report by AO Kastpersky Lab [? ] that
points to the growing popularity of digital payments that attracted
an unwanted attention by cybercriminals translated by a dramatic
increase in the number of �nance-related attacks.

(a) Evolution (b) Coverage
Figure 4: Time coverage of blacklists and evolution of Mal-
Activities in our dataset.

4.2 Modeling and analyzing the Churn of
reported IPs

Here, we aim to model occurrences of Mal-Activities in time. More
speci�cally we are interested in understanding the involvement of
hosts into a speci�c malicious activity over time.

The model: Consider a malicious ecosystem with n partici-
pating hosts, where each host i is either alive (i.e., present in the
system) or dead (i.e., logged o�/clean/not reported) at any given
time t . An active host can be reported one or multiple times as
being malicious (denoted k). This behavior can be modeled by an
alternating renewal process Zi (t) for each host i similar to Yao et
al., [? ]’s Churn model :

Zi (t) =
8>>><
>>>:
k ,

host i has received
k reports at time t

0, Otherwise
, 1  i  n (4)

where n is the total number of hosts in our dataset and t is in
weeks. Hence, our traces are created by binning the reports into
weeks and per reported host (here host may refer to IP, AS number
or Country of the reported IP).

Our model is illustrated in Figure 5 where variable c stands
for the cycle number and durations of host i’s ON (life) and OFF
(death) periods are given by random variables Li,c > 0 and Di,c > 0,
respectively.We adopt the samemodeling assumptions as in [? ] and
assume that all lifetime (i.e., {Li,c8c}) and o�time (i.e., {Di,c8c})
are i.i.d. sets of variables. For convenience of notation, we de�ne the

Country Mapping.We further use MaxMind GeoCity [10] and Pota-
roo [21] datasets to map an IP address to its respective country (i.e.,
territories under sovereign rule or autonomous entities, e.g. BV.)
and country code, and used the Wayback Machine to obtain their
archived versions for historical mappings. Since these archived ver-
sions have “gaps,” we consider the closest available IP-geolocation
mapping to the reported mal-activity timestamp. This approxima-
tion is further discussed in Section 2.6.

2.4 Classi�cation of Mal-Activities
Our augmented FinalBlacklist is composed of a myriad of mal-
activities with 15% (7.6M) originally labeled by their respective
data sources, and the remaining 85% (44M) unlabeled. To classify
all mal-activities, we employ manual classi�cation of the labeled
mal-activities, and leverage machine learning to extend the known
labels onto the unlabeled dataset. We detail these approaches in the
following sections.

2.4.1 Manual Classification of Labeled Dataset. Each labeled mal-
activity in our dataset is classi�ed into one of 4,918 unique mal-
activity labels by their respective data sources. Careful analysis of
these labels shows that the disparity between labels can be reduced
by only considering the end-goal or motivation of the adversary.
Based on this observation, each author re-classi�ed each activity
into one of only six classes of labels. The co-authors disagreed on
1.07% of the cases, which was resolved using majority voting. If
consensus was not reached, the activity was marked as unlabeled
and discarded from the labeled dataset. The classes of reported mal-
activities are Exploits, Malware, Fraudulent Services (FS), Spammers,
Phishing, and Potentially Unwanted Programs (PUP). We de�ne these
mal-activities in Appendix B.

2.4.2 Classifying Unlabeled Dataset. Classi�cation of a large num-
ber (44M, 85%) of unlabeled mal-activities is a non-trivial task. One
way is to leverage the VirusTotal request API to retrieve labels.
However, due to rate limits imposed by VirusTotal, classifying this
volume of mal-activities would require an unreasonable amount of
time. Therefore, we decided to use our labeled dataset (7.6M, 15%)
to determine if there is su�cient information available that can be
used to predict class labels to the unlabeled mal-activities.

Motivation. To motivate the plausibility of this approach, we
highlight one aspect of the labelled dataset called “specialization.”
More precisely, we found that a large proportion of hosts partic-
ipate in single class of mal-activity, i.e., specialize in one class
of activity, indicating that past involvement in a particular mal-
activity class is a good indicator of a future class label. To demon-
strate this, for a given host h (IP address) in the labeled dataset,
we �rst compute: p(h,a) = # of reports for host h with activity a

Total # of reports for host h , where
a is one of the six mal-activity classes. We then de�ne a probabilis-
tic metric, host specialization, which is based on the distribution
of mal-activities by hosts in the labeled dataset. Formally, it is
de�ned as the normalized Shannon entropy per host h given by
S(h) = (�Õ

a p(h,a) log2 p(h,a))/log2 k , where k  6 is the num-
ber of activities done by host h and a ranges over the 6 classes of
activities. A host highly specializes in a single class of mal-activity
if it has a lower value of S(h).

Figure 2: IPs, ASes, and Countries Specialization in Blacklist-07-17
dataset. Most IP addresses specialize in a single class ofmal-activity.

From Figure 2, we observe that 80% of the reported IP addresses
exclusively participate in one class of mal-activity.Whenwe expand
the de�nition of a host to include an AS or a country, we observe
a more uniform distribution across the hosts, with 55% of ASes
and only 20% of countries (CC) participating in one class of mal-
activity. Furthermore, only 0.04% (311) of IP addresses, 2.12% (275)
of ASes, and 27.4% (54) of countries, participate in all six classes.
On closer look, we found that 96.8% of IP addresses, 87.7% of ASes
and 74.4% of countries have a relative entropy value of less than
0.50. This suggests that a substantial number of hosts (IPs, ASes,
and Countries) will be biased towards one class of mal-activities.

Following this intuition, we suspect there is su�cient informa-
tion within the mal-activity reports for the training of a classi�er
to predict the report’s mal-activity label. Speci�cally, if this trained
classi�er has good testing accuracy on our labelled dataset, we
can leverage the classi�er to predict the mal-activity label of our
unlabelled reports.

Machine Learning Approach to Label Mal-Activities. As each re-
port can be labelled one of the 6 mal-activity labels (§2.4), we es-
tablish the task of predicting the mal-activity label as a multi-class
classi�cation problem. We leverage a Random Forest classi�er, with
our original labelled dataset divided into training (40%) and testing
(60%) sets. The labelled Blacklist-07-17 dataset contains 1,006,171
samples of malware, 164,149 of phishing, 60,146 of exploit, 297,652
of fraudulent services, 43,582 of unwanted programs, and 2,691
samples of spammers. The split of the dataset (into training and
testing sets) is strati�ed, with a consistent proportion of training
and testing samples for each mal-activity label. The large number
of reports in the labelled dataset prevented us from using more
reports in the training dataset, as the random forest implementa-
tion from scikit-learn [53] would encounter memory issues, despite
more than 96 GB of RAM provisioned for the task. As the training
set is dwarfed by the testing set, we repeated the model training
and testing process 5 times, each on di�erent training/testing splits
of the data. This repetition ensures our results are not a result of a
biased split in the data.

Table 1 lists the features used for labelling mal-activities. We
note that One-Hot encoding is a common approach of encoding
categorical features, whereby the encoding maps a categorical fea-
ture with k categories into k binary vectors. An alternate method
is to encode the categorical data as numerals, however, this would
also produce a misleading numerical relationship between the cat-
egories depending on their order. We have chosen the features of

80% of the IPs exclusively participate in one class of malicious-activity 
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2. Machine Learning Approach
- Use features of labeled 
dataset to classify 44M 
malicious activities
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Classification Challenge

day, month, year, and IP address (decomposed into octets) as this is
the most basic information available in a mal-activity report. On
the other hand, AS, country and organization information can be
easily found from the given IP address via a whois lookup.

We decompose the IP address into its octets to allow the model
to learn possible \8, \16, \24, \32 relationships, that would otherwise
not be possible with a full 32-bit IP encoding. It is also acknowl-
edged that IPs are dynamic in nature, and it has been observed that
malicious domains hosting malware are transferred to other IPs
within an IP block under a single controlling entity (e.g., hosting
provider such as Amazon) [49]. Therefore in the interest of produc-
ing a su�ciently generalized model to handle possible IP changes,
we use octets.

Table 1: Features used in Classi�cation Task

Feature Data Type
Day integer

Month integer
Year integer

IP bits (0-7) integer
IP bits (8-15) integer
IP bits (16-23) integer
IP bits (24-31) integer

AS integer
Country One-Hot encoding

Organization One-Hot encoding

Performance and Prediction of Unlabelled Data. On 6 Cores of an
Intel Xeon E5-2660 V3 clocked at 2.6 GHz and 96GB of memory, the
whole classi�cation process took approximately 15 minutes. This
includes loading/splitting the data, training, testing and writing
results to disk. As we have trained 5 models on di�erent splits
of the original training data, rather than discarding 4 models to
only use one, we construct an ensemble of all 5 models (a classi�er
ensemble).

Each of the 5 models provides a prediction, consisting of a label
and associated probability (con�dence). From this, the label with
the highest average probability is assigned to the mal-activity re-
port. This method of majority voting is known as soft-voting. The
class-speci�c accuracies of Malware, Phishing, Exploits, Fraudulent
Services, PUP, Spammers, averaged over all 5 models is 93.04%,
93.85%, 79.04%, 91.70%, 96.29%, 82.57%, respectively. Since the num-
ber of samples for each label is uneven, we therefore performed a
weighted average over the label-speci�c accuracies to produce an
overall accuracy, which turned out to be 92.49%.

2.5 Summary of the Augmented Dataset
In Table 2, we report the total number of mal-activities correspond-
ing to the six classes, along with the collected metadata. Overall,
we collected a total of 51,645,995 mal-activity reports from all data
sources (cf. Table 5 in Appendix A.1). With manual labeling and the
use of our random forest machine learning classi�er, we categorized
44,003,768 (85%) unlabelled reports into six di�erent classes. The
result produces malware as the largest mal-activity class (90.9%),
and spammers as the smallest (0.01%).

Given that 136,941 (20.7%) of IP addresses in the reports are being
reported to be involved in more than one class of mal-activities,
the percentage breakdown under each metadata attribute such
as IP address, ASes or geolocation (country) does not add up to
100%. We found that the labelled IPs (662,409) host 8.42M, 8.79M,
and 948K number of unique domains, URLs, and malicious �les
(i.e., executables), respectively. We also �nd that IP addresses that
correspond to mal-activities are referenced in 18K malicious �les
(i.e., referrers).

Note that, as an IP-endpoint (such as a Web server) could host
more than one domain and could have multiple resources (i.e.,
URLs), once again, the percentage of number of domains and URLs
does not add to 100%.

Table 2: Summary of the FinalBlacklist dataset. “U” denotes unique
and “FS” represents Fraudulent Services.

Class # Reports # U. IP # U. ASes # U. CC

Malware 46,932,466 (90.9%) 427,745 (65%) 11,435 (88%) 196 (99%)
Phishing 2,450,247 (4.74%) 133,072 (20%) 4,402 (34%) 139 (70%)

FS 1,141,377 (2.21%) 87,508 (13%) 3,264 (25%) 118 (60%)
PUP 895,494 (1.73%) 165,465 (25%) 2,200 (17%) 81 (41%)

Exploits 218,791 (0.42%) 39,854 (6%) 2,966 (23%) 112 (57%)
Spammers 7,620 (0.01%) 2,209 (0.3%) 561 (4%) 60 (30%)

Total 51,645,995 (100%) 662,409 (100%) 12,950 (100%) 198 (100%)

2.6 Limitations
Despite our best e�orts to collect the most comprehensive set of
data sources to perform our study, there are still some limitations
worth mentioning.

First, a limitation Blacklist-07-17 is that we did not use some
popular blacklists that we are aware of (e.g., the Spamhaus Project
[26] and PhishTank [20]), as the lists in those reporting services
were dynamically generated and hence it is very di�cult to extract
their historical versions (the Way Back machine does not archive
dynamically generated content). Second, Blacklist-07-17 might be
biased towards speci�c or niche threats, e.g., speci�c focus of the
Zeus, Spyeye or OpenPhish blacklists (cf. Table 5). Also, Wayback
Machine snapshots are sporadic and as a result Blacklist-07-17 is
subject to sparsity in time coverage. This was one of the motivations
to feed the initial lists to the VirusTotal service to extract more
comprehensive reports across the whole 2007-2017 period.

Finally, the IP-Country mappings described in Section 2.3, are
obtained fromWayback Machine archives of Maxmind and Potaroo.
Here, we could not recover the exact mapping due to the sporadic
nature of Wayback Machine records (as we did for the historical ver-
sions of blacklists using VT Score reporting). Instead, we consider
the closest available IP-geolocation mapping to the reported mal-
activity timestamp. We acknowledge that accuracy of IP address
to location databases may impact our analysis. However, note that
database accuracies are questioned at the city and region-levels,
but previous research has shown that geolocation databases can
e�ectively locate IP addresses at the country-level [55].

day, month, year, and IP address (decomposed into octets) as this is
the most basic information available in a mal-activity report. On
the other hand, AS, country and organization information can be
easily found from the given IP address via a whois lookup.

We decompose the IP address into its octets to allow the model
to learn possible \8, \16, \24, \32 relationships, that would otherwise
not be possible with a full 32-bit IP encoding. It is also acknowl-
edged that IPs are dynamic in nature, and it has been observed that
malicious domains hosting malware are transferred to other IPs
within an IP block under a single controlling entity (e.g., hosting
provider such as Amazon) [49]. Therefore in the interest of produc-
ing a su�ciently generalized model to handle possible IP changes,
we use octets.

Table 1: Features used in Classi�cation Task

Feature Data Type
Day integer

Month integer
Year integer

IP bits (0-7) integer
IP bits (8-15) integer
IP bits (16-23) integer
IP bits (24-31) integer

AS integer
Country One-Hot encoding

Organization One-Hot encoding

Performance and Prediction of Unlabelled Data. On 6 Cores of an
Intel Xeon E5-2660 V3 clocked at 2.6 GHz and 96GB of memory, the
whole classi�cation process took approximately 15 minutes. This
includes loading/splitting the data, training, testing and writing
results to disk. As we have trained 5 models on di�erent splits
of the original training data, rather than discarding 4 models to
only use one, we construct an ensemble of all 5 models (a classi�er
ensemble).

Each of the 5 models provides a prediction, consisting of a label
and associated probability (con�dence). From this, the label with
the highest average probability is assigned to the mal-activity re-
port. This method of majority voting is known as soft-voting. The
class-speci�c accuracies of Malware, Phishing, Exploits, Fraudulent
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more than one domain and could have multiple resources (i.e.,
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does not add to 100%.
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results to disk. As we have trained 5 models on di�erent splits
of the original training data, rather than discarding 4 models to
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and associated probability (con�dence). From this, the label with
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44,003,768 (85%) unlabelled reports into six di�erent classes. The
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Given that 136,941 (20.7%) of IP addresses in the reports are being
reported to be involved in more than one class of mal-activities,
the percentage breakdown under each metadata attribute such
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and 948K number of unique domains, URLs, and malicious �les
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more than one domain and could have multiple resources (i.e.,
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does not add to 100%.
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First, a limitation Blacklist-07-17 is that we did not use some
popular blacklists that we are aware of (e.g., the Spamhaus Project
[26] and PhishTank [20]), as the lists in those reporting services
were dynamically generated and hence it is very di�cult to extract
their historical versions (the Way Back machine does not archive
dynamically generated content). Second, Blacklist-07-17 might be
biased towards speci�c or niche threats, e.g., speci�c focus of the
Zeus, Spyeye or OpenPhish blacklists (cf. Table 5). Also, Wayback
Machine snapshots are sporadic and as a result Blacklist-07-17 is
subject to sparsity in time coverage. This was one of the motivations
to feed the initial lists to the VirusTotal service to extract more
comprehensive reports across the whole 2007-2017 period.

Finally, the IP-Country mappings described in Section 2.3, are
obtained fromWayback Machine archives of Maxmind and Potaroo.
Here, we could not recover the exact mapping due to the sporadic
nature of Wayback Machine records (as we did for the historical ver-
sions of blacklists using VT Score reporting). Instead, we consider
the closest available IP-geolocation mapping to the reported mal-
activity timestamp. We acknowledge that accuracy of IP address
to location databases may impact our analysis. However, note that
database accuracies are questioned at the city and region-levels,
but previous research has shown that geolocation databases can
e�ectively locate IP addresses at the country-level [55].
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Distribution of Malicious Activities:
Across IPs

IP (63.0%) are repeat offenders with FS (81.6%) and 
Malware (65.0%) are the most involved in more than one corresponding malicious activity  

(a) IPs (b) Countries (c) ASes

Figure 3: Number of mal-Activities per IP, country and ASN.

third in the list with 44.5% and 33.7% respectively, participating in
mal-Activities.

Insights. AS31624 is a now defunct Trading and Service De-
posit Company. BELCLOUD’s AS44901 is a data center, which had
previously routed malicious requests, as detected by BGP Route
Views [23]. Sambreel, is a software services company which de-
veloped adware plugins that were later abused by advertisers [24],
contributing to a larger space of maliciously marked IP addresses.
A shared trait between these ASes is that they have comparatively
smaller IP space, with none of the three exceeding 5,000 allocated
IP addresses. The reader may argue that content ASes, in particular,
hosting services, are expected to have a large proportion of their
IP space constantly abused. However, we observe that in all the
registered content ASes, only 5% have more than 1% of their IP
Space marked as malicious. Note further that viewing the propor-
tions of IP space marked as malicious does not give the complete
picture, as the biggest o�enders in terms of volume of mal-activities
is AS20940 (Akamai International B.V.), and AS14618 (Amazon.com,
Inc.), with a proportion of malicious IP space of only 0.49% and
1.36% respectively.

Table 3: Top 5 (a) countries and (b) ASes, with the largest ratio of
allocated IP space reported for participating in mal-activities.

(a) Countries

Country Code (CC) Mal. IPs Total IPs Ratio Vol.

VG 1443 135,030 1.07% 207,125
AI 91 10,260 0.89% 222
LT 4928 2,690,680 0.18% 36,802
BZ 323 178,472 0.18% 1,895
LU 14 8,448 0.17% 26,273

(b) ASes

Mal. Tot. Total
AS Organization IPs IPs Ratio Vol.

31624 VFMNL-AS, NL 2,506 4,352 57.58% 12,253
44,901 BELCLOUD, BG 114 256 44.53% 1,153
54,761 SAMBREEL, US 431 1,280 33.67% 1,482
133,618 TRELLIAN-AS, AU 277 1,024 27.05% 36,442
49,087 PodCem-AS, UA 68 256 26.56% 720

(a) Countries

(b) ASes

Figure 4: The ratio of the number of IPs per country (resp. AS) in-
volved inmal-Activities to total number of allocated IPs per country
(resp. AS).

3.3 Geographical Entropy of Mal-Activity
In this section, we aim to �nd if (classes) of mal-activities are evenly
spread across hosts (IP addresses, ASes and countries) or are they
concentrated around a particular hosting infrastructure. We do this
by assessing the “geographical entropy” of mal-activities with a
diversity (or homogeneity) metric named a�nity based on Shannon
entropy.

A�inity. We de�ne a�nity as the normalized entropy per malicious
activity a as A(a) = (�Õ

h q(h,a) log2 q(h,a))/log2 l , where l is the
number of hosts hosting an activity a, and;

q(h,a) = # of reports from host h with activity a
Total # of reports for activity a

.

HereA(a) = 1means that reports of themal-activitya are uniformly
distributed among all hosts and conversely, and A(a) = 0 implies
that all reports are concentrated on a single host.

54.72.9.51 (Free AWS) is the most repeated offender with high volume of SpyEye
Trojans and Exploit kits
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Distribution of Malicious Activities:
Across Countries

Malicious activities are not evenly distributed among countries: 20.2% of countries 
having more than 10K malicious reports

Spamming activities: US (35%), Russia (22%), British Virgin Islands (9%), and  Ukraine (5%)

(a) IPs (b) Countries (c) ASes

Figure 3: Number of mal-Activities per IP, country and ASN.
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Insights. AS31624 is a now defunct Trading and Service De-
posit Company. BELCLOUD’s AS44901 is a data center, which had
previously routed malicious requests, as detected by BGP Route
Views [23]. Sambreel, is a software services company which de-
veloped adware plugins that were later abused by advertisers [24],
contributing to a larger space of maliciously marked IP addresses.
A shared trait between these ASes is that they have comparatively
smaller IP space, with none of the three exceeding 5,000 allocated
IP addresses. The reader may argue that content ASes, in particular,
hosting services, are expected to have a large proportion of their
IP space constantly abused. However, we observe that in all the
registered content ASes, only 5% have more than 1% of their IP
Space marked as malicious. Note further that viewing the propor-
tions of IP space marked as malicious does not give the complete
picture, as the biggest o�enders in terms of volume of mal-activities
is AS20940 (Akamai International B.V.), and AS14618 (Amazon.com,
Inc.), with a proportion of malicious IP space of only 0.49% and
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In this section, we aim to �nd if (classes) of mal-activities are evenly
spread across hosts (IP addresses, ASes and countries) or are they
concentrated around a particular hosting infrastructure. We do this
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diversity (or homogeneity) metric named a�nity based on Shannon
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distributed among all hosts and conversely, and A(a) = 0 implies
that all reports are concentrated on a single host.
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Distribution of Malicious Activities:
Across Autonomous Systems (ASes)

82.4% of the ASes are involved in more than one malicious activity. Spammers are 
distributed over the smallest proportion of ASes, only 4.33%.

AS16509 (AMAZON-02) is most aggressive with 25.8M of all malicious reports, 
predominantly malware (24.5M) and phishing (463K) 

(a) IPs (b) Countries (c) ASes

Figure 3: Number of mal-Activities per IP, country and ASN.
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allocated IP space reported for participating in mal-activities.

(a) Countries

Country Code (CC) Mal. IPs Total IPs Ratio Vol.

VG 1443 135,030 1.07% 207,125
AI 91 10,260 0.89% 222
LT 4928 2,690,680 0.18% 36,802
BZ 323 178,472 0.18% 1,895
LU 14 8,448 0.17% 26,273

(b) ASes

Mal. Tot. Total
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31624 VFMNL-AS, NL 2,506 4,352 57.58% 12,253
44,901 BELCLOUD, BG 114 256 44.53% 1,153
54,761 SAMBREEL, US 431 1,280 33.67% 1,482
133,618 TRELLIAN-AS, AU 277 1,024 27.05% 36,442
49,087 PodCem-AS, UA 68 256 26.56% 720
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Figure 4: The ratio of the number of IPs per country (resp. AS) in-
volved inmal-Activities to total number of allocated IPs per country
(resp. AS).

3.3 Geographical Entropy of Mal-Activity
In this section, we aim to �nd if (classes) of mal-activities are evenly
spread across hosts (IP addresses, ASes and countries) or are they
concentrated around a particular hosting infrastructure. We do this
by assessing the “geographical entropy” of mal-activities with a
diversity (or homogeneity) metric named a�nity based on Shannon
entropy.

A�inity. We de�ne a�nity as the normalized entropy per malicious
activity a as A(a) = (�Õ

h q(h,a) log2 q(h,a))/log2 l , where l is the
number of hosts hosting an activity a, and;

q(h,a) = # of reports from host h with activity a
Total # of reports for activity a

.

HereA(a) = 1means that reports of themal-activitya are uniformly
distributed among all hosts and conversely, and A(a) = 0 implies
that all reports are concentrated on a single host.
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Figure 3: Number of mal-Activities per IP, country and ASN.

third in the list with 44.5% and 33.7% respectively, participating in
mal-Activities.
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veloped adware plugins that were later abused by advertisers [24],
contributing to a larger space of maliciously marked IP addresses.
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IP space constantly abused. However, we observe that in all the
registered content ASes, only 5% have more than 1% of their IP
Space marked as malicious. Note further that viewing the propor-
tions of IP space marked as malicious does not give the complete
picture, as the biggest o�enders in terms of volume of mal-activities
is AS20940 (Akamai International B.V.), and AS14618 (Amazon.com,
Inc.), with a proportion of malicious IP space of only 0.49% and
1.36% respectively.
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3.3 Geographical Entropy of Mal-Activity
In this section, we aim to �nd if (classes) of mal-activities are evenly
spread across hosts (IP addresses, ASes and countries) or are they
concentrated around a particular hosting infrastructure. We do this
by assessing the “geographical entropy” of mal-activities with a
diversity (or homogeneity) metric named a�nity based on Shannon
entropy.

A�inity. We de�ne a�nity as the normalized entropy per malicious
activity a as A(a) = (�Õ

h q(h,a) log2 q(h,a))/log2 l , where l is the
number of hosts hosting an activity a, and;

q(h,a) = # of reports from host h with activity a
Total # of reports for activity a

.

HereA(a) = 1means that reports of themal-activitya are uniformly
distributed among all hosts and conversely, and A(a) = 0 implies
that all reports are concentrated on a single host.
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1. Why we need enriched cybersecurity dataset?

2. Large Scale Cybersecurity Data Collection and 
Enrichment Process

3. Insights

1. Characterization

2. Temporal Analysis

4. Way forward: How can we leverage this dataset 
to improve detection systems
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Are Malicious activities growing? 
Evolution of Malicious Activities

Malicious activities have been steadily increasing in volume over the last decade, with 
an interesting spike around 2008-2009 driven by the inception of high-profile FS and 

exploit kits 

Phishing has recently undergone an increase in volume: 29% of all malicious activities in 2017
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Do Malicious Actors Churn?
Churn, periods of presence, let’s dig deeper!

• Spammers often quarantine bots for a period of time, waiting for them to be 
“whitelisted” again. 

*Stone-Gross et al., The underground economy of spam: A botmaster’s perspective of coordinating large-scale spam campaigns. LEET'11
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Do Malicious Actors Churn?
Churn, periods of presence, let’s do modeling!

• Alternating renewal process Zi(t) for each host h, like peers churn model in P2P networks 

* Yao et al., Modeling heterogeneous user churn and local resilience of unstructured p2p networks, ICNP’06
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𝑡𝑡𝐾𝐾𝑖𝑖,𝑐𝑐

Figure 6: ChurnModel. Ki,c is the total number of reports in
the cth period of activity of host i.

are created by binning the reports into weeks per reported host
(recall that host refers to an IP, AS or CC).

The model is illustrated in Figure 6 where c stands for the cycle
number, and durations of host i’s ON (life) and OFF (death) periods
are given by variables Li,c > 0 and Di,c > 0, respectively. Unlike
the model in [58], we empirically evaluate (through our data) all
lifetime (i.e., {Li,c }1c=1) and o�-time (i.e., {Di,c }1c=1) durations by
averaging over all cycles in our dataset. We denote the average
lifetime as Li and the average deathtime as Di .

A high average lifetimewould re�ect a report of persistent threats
(or infection) generally referred to as bulletproof entities, since
their involvement in mal-activities is not interrupted for extended
durations (even after being reported). A low average deathtime
indicates resiliency of the reported host as the mal-activity quickly
recovers from a potential shutdown. The reciprocal of mean cycle
duration is representative of the rate of arrival of a particular host. It
indicates the frequency with which a host participates in, or leaves,
a class of mal-activity and is de�ned as: �i = 1

Li+Di
. Consider a

scenario where a malicious host is frequently joining and leaving a
group of reported botnets (i.e., in bursts), then both average lifetime
and average deathtime would be small, and hence �i would be
relatively large.

Figure 7 displays the CDFs of mean lifetime, mean deathtime
and reciprocal of mean duration per IP address, ASN and country in
the Blacklists. Figure 7a shows that 86.4% of the IPs are short-lived
o�enders with an average duration of just a week. As mentioned
earlier, we refrain from drawing conclusions on the time-based
behavior observed at an IP level due to the very likely dynamic IP
allocation over time. At an AS-level we found that 56.5% of the ASes
are short-lived with an average of one week duration of presence
in the blacklists. This number is drastically reduced to 17.4% for
countries, many of which are small African nations, or island states.

The long tails observed in the CDF of mean lifetime in Figure 7a
indicate that there are only a few hosts with an extended lifetime.
We report the IP addresses, ASes, and countries with the highest
lifetimes in Table 4(a). We observe that US has the longest mean
lifetime of 511 weeks by a large margin (China is ranked second at
55.8 weeks), showing a much higher persistence of reported mal-
activity in the US than any other country. Brazil, Canada and the
UK are the next most persistent countries with the longest average
lifetime of 54.8, 37.8 and 37.7 weeks, respectively. At an AS-level,
the most persistent reported AS is “China Telecom Backbone” with
147.0 weeks.

Figure 7b and Table 4(b) suggest that while most IP addresses
have a mean deathtime longer than 100 weeks indicating a low
participation, the “long head” indicates that only a few IPs are

recurring participants. Again with a focus on the AS and country
level, we observed that most ASes and countries are repeat o�enders
from the perspective of blacklist reporting. At the country level,
in terms of resiliency (low deathtime), US is ranked �rst with no
deathtime, followed by Germany (1.50) and British Virgin Islands
(1.60).

For the rate of arrival, we calculate the reciprocal of mean du-
ration and rank the countries accordingly. Table 4(c) shows that
the top 5 countries in terms of arrival rates are Colombia, Panama,
Bahamas, Norway, and Mexico, and constitute the most recurrent
countries to be reported in mal-activity involvement.

We also analyze the churn with respect to mal-activity classes.
From Figure 8a, we can observe that exploits tend to have reports
with the lowest mean lifetime (one week), while the rest of the
mal-activity classes are similar to each other with a heavier concen-
tration at longer weekly durations. In terms of resiliency, phishing
has the lowest deathtime (highest resiliency) as shown in Figure
8b. Due to lower mean deathtime, phishing also has the highest
mean rate of arrival indicated in Figure 8c, implying highly frequent
on-o� reporting cycles, i.e., reported (in)active behavior.

Lessons Learned. The analysis shows that a small number of hosts
exhibit high renewal of mal-activities, indicating their presence on
a blacklist has not deterred their activities. The most recurrent IP
has an average report activity cycle of 5.5 weeks. Had this host
been blocked by blacklists, it would have been removed from said
lists in less than 5.5 weeks from the �rst reports. Thus blacklists
can consider longer durations prior to delisting a malicious host.
Phishing has been observed with the highest resiliency to periods
of no reporting (on average 54 weeks less than all mal-activities
combined), again suggesting delisting or their ability to circumvent
blacklist-based blocking. A overwhelming majority (97.7%) of IP
reports cease activities in 2 weeks, with average cycles of 185 weeks,
the blacklist providermust tradeo� between potential false positives
of hosts which had only been momentarily infected, or curbing the
minority of recurrent hosts.

4.3 Magnitude of Reported Malicious Activities
We de�ne a “severity” metric to quantify the magnitude of the
reported activity during active periods of malicious hosts in the
blacklists. Formally, severity is de�ned as the average number of
reports of mal-activities per active cycle as per Figure 6. For host i ,
let Ki,c denote the total number of reports within the cth period of
activity5 and as before let Li,c denote the active period (in weeks).
Then severity of host i , is de�ned as the average of Ki,c/Li,c over
all cycles of the host i in the dataset. A high severity value indi-
cates that whenever a host is active (reported in the blacklists) it is
accompanied by a large volume of reported mal-activities. Severity
allows us to distinguish between long-living persistent reporting
of threats and short-living but denser reporting mal-activities.

We report the results of magnitude analysis in Figure 9. Observe
that 27.4% of ASes and 9.45% of countries have a severity value
equal to one indicating a unique malicious report per week. The
CDF in Figure 10b indicates that only a few hosts are participating

5Care has been taken to remove duplicate reports, i.e., same (time, IP, URL) tuple, from
Blacklist-07-17. In any case, potential duplicates in the 2M reports from Blacklist-07-17
dwarf in comparison to the 49M unique reports obtained from VT.
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Life-cycle in cth period of activity of host i. Death-cycle
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To further investigate the diversity of Mal-Activities, we calcu-
late the country a�nity which resulted in an even lower entropy
for PUP (0.105) and the highest entropy for Spammers (0.556). We
observe that US alone contributes 92% of the PUP activity in con-
trast to its contributions of 39% to the Spammers Mal-Activity. We
also note that US contributes 68% of the total Mal-Activities. Over-
all, a 92% of the Spammers Mal-Activities are distributed over 13
countries.

The high value of IP a�nity and the lower value of AS (resp.
country) a�nity suggest that PUP uses multiple IPs from a small
number of AS (resp. country) to in�ict PUP class of Mal-Activities.

Next, we measure the entropy of a host (i.e. IP, AS and country)
to identify whether there are hosts that are specialized to distribute
a certain class of Mal-Activities.

Specialization. The distribution of hosts across classes of Mal-
Activities is de�ned as normalized Entropy per host h as S(h) =
(�Õ

8a P(h) log2 P(h))/log2 k , where k is the number of activities
for host, h, and the probability P(h) is de�ned as:

S(h) = (�
’
8a

P(h) log2 P(h))/log2 k, (2)

P(h) = # of reports from host h with activity a
Total # of reports for host h

(3)

Strong specialization of hosting one particular Mal-ctivity class is
represented by higher S(h) value for a given host h.

Figure 3: IPs, ASes, and Countries Specialization
From Figure 3, we observe that 80% of IPs exclusively participate

in one class of Mal-Activities. When we analyze Mal-Activities at
the AS and country level, we observe a more uniform distribution
of the Mal-Activities within the hosts (i.e., ASes and countries).
We determine that 80% of countries participate in more than one
class of Mal-Activities while 55% of ASes participate in only one
class of Mal-Activities. We note that 0.04% (311) of IPs, 27.4% (54)
of countries, 2.12% (275) of ASes participate all six classes. On
closer look, we found that 96.8% of IPs, 87.7% of ASes and 74.4% of
countries have an entropy value at most 0.50. This suggests that a
substantial number of hosts will be biased toward one class of its
Mal-Activities.

4 TEMPORAL ANALYSIS
We now focus on the temporal evolution of Mal-Activities as re-
ported since January 2007.

4.1 Evolution of Mal-Activities
We analyze the cumulative volume of categories of Mal-Activities
in our dataset over time in Figure 4(a) (Note the y-axis log scale).
We also show the time coverage for our seed blacklists datasets in
Figure 4(b).

Perhaps not surprisingly, we observe that reportedMal-Activities
have been steadily increasing in volume over the last decade (The
Solid line in the Figures shows the cumulative total number of

repots), with an interesting spike around late 2008 driven by the
inception of Fraudulent services and Exploit kits. One of the earliest
kits was MPack[? ], a very popular “user-friendly” Exploit kit and
was introduced 2006. Typically, MPack included a collection of PHP
scripts aiming at exploiting Browsers’ security holes and commonly
used programs (e.g., Quicktime). Notably, the Spammers, while
showing not particular peaks, has been continuously and steadily
increasing in volume. The Phishing category has seen two distinct
periods of reporting. First, during 2009 and then in 2013 with an
increase in the total volume of reports by two orders of magnitude.
This is consistent with a report by AO Kastpersky Lab [? ] that
points to the growing popularity of digital payments that attracted
an unwanted attention by cybercriminals translated by a dramatic
increase in the number of �nance-related attacks.

(a) Evolution (b) Coverage
Figure 4: Time coverage of blacklists and evolution of Mal-
Activities in our dataset.

4.2 Modeling and analyzing the Churn of
reported IPs

Here, we aim to model occurrences of Mal-Activities in time. More
speci�cally we are interested in understanding the involvement of
hosts into a speci�c malicious activity over time.

The model: Consider a malicious ecosystem with n partici-
pating hosts, where each host i is either alive (i.e., present in the
system) or dead (i.e., logged o�/clean/not reported) at any given
time t . An active host can be reported one or multiple times as
being malicious (denoted k). This behavior can be modeled by an
alternating renewal process Zi (t) for each host i similar to Yao et
al., [? ]’s Churn model :

Zi (t) =
8>>><
>>>:
k ,

host i has received
k reports at time t

0, Otherwise
, 1  i  n (4)

where n is the total number of hosts in our dataset and t is in
weeks. Hence, our traces are created by binning the reports into
weeks and per reported host (here host may refer to IP, AS number
or Country of the reported IP).

Our model is illustrated in Figure 5 where variable c stands
for the cycle number and durations of host i’s ON (life) and OFF
(death) periods are given by random variables Li,c > 0 and Di,c > 0,
respectively.We adopt the samemodeling assumptions as in [? ] and
assume that all lifetime (i.e., {Li,c8c}) and o�time (i.e., {Di,c8c})
are i.i.d. sets of variables. For convenience of notation, we de�ne the

# of reports in the cth period/cycle of activity of host i. 
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Do Malicious Actors Churn?
Churn, periods of presence, let’s do modeling!

• Alternating renewal process Zi(t) for each host h, like peers churn model in P2P networks 

* Yao et al., Modeling heterogeneous user churn and local resilience of unstructured p2p networks, ICNP’06
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Figure 6: ChurnModel. Ki,c is the total number of reports in
the cth period of activity of host i.

are created by binning the reports into weeks per reported host
(recall that host refers to an IP, AS or CC).

The model is illustrated in Figure 6 where c stands for the cycle
number, and durations of host i’s ON (life) and OFF (death) periods
are given by variables Li,c > 0 and Di,c > 0, respectively. Unlike
the model in [58], we empirically evaluate (through our data) all
lifetime (i.e., {Li,c }1c=1) and o�-time (i.e., {Di,c }1c=1) durations by
averaging over all cycles in our dataset. We denote the average
lifetime as Li and the average deathtime as Di .

A high average lifetimewould re�ect a report of persistent threats
(or infection) generally referred to as bulletproof entities, since
their involvement in mal-activities is not interrupted for extended
durations (even after being reported). A low average deathtime
indicates resiliency of the reported host as the mal-activity quickly
recovers from a potential shutdown. The reciprocal of mean cycle
duration is representative of the rate of arrival of a particular host. It
indicates the frequency with which a host participates in, or leaves,
a class of mal-activity and is de�ned as: �i = 1

Li+Di
. Consider a

scenario where a malicious host is frequently joining and leaving a
group of reported botnets (i.e., in bursts), then both average lifetime
and average deathtime would be small, and hence �i would be
relatively large.

Figure 7 displays the CDFs of mean lifetime, mean deathtime
and reciprocal of mean duration per IP address, ASN and country in
the Blacklists. Figure 7a shows that 86.4% of the IPs are short-lived
o�enders with an average duration of just a week. As mentioned
earlier, we refrain from drawing conclusions on the time-based
behavior observed at an IP level due to the very likely dynamic IP
allocation over time. At an AS-level we found that 56.5% of the ASes
are short-lived with an average of one week duration of presence
in the blacklists. This number is drastically reduced to 17.4% for
countries, many of which are small African nations, or island states.

The long tails observed in the CDF of mean lifetime in Figure 7a
indicate that there are only a few hosts with an extended lifetime.
We report the IP addresses, ASes, and countries with the highest
lifetimes in Table 4(a). We observe that US has the longest mean
lifetime of 511 weeks by a large margin (China is ranked second at
55.8 weeks), showing a much higher persistence of reported mal-
activity in the US than any other country. Brazil, Canada and the
UK are the next most persistent countries with the longest average
lifetime of 54.8, 37.8 and 37.7 weeks, respectively. At an AS-level,
the most persistent reported AS is “China Telecom Backbone” with
147.0 weeks.

Figure 7b and Table 4(b) suggest that while most IP addresses
have a mean deathtime longer than 100 weeks indicating a low
participation, the “long head” indicates that only a few IPs are

recurring participants. Again with a focus on the AS and country
level, we observed that most ASes and countries are repeat o�enders
from the perspective of blacklist reporting. At the country level,
in terms of resiliency (low deathtime), US is ranked �rst with no
deathtime, followed by Germany (1.50) and British Virgin Islands
(1.60).

For the rate of arrival, we calculate the reciprocal of mean du-
ration and rank the countries accordingly. Table 4(c) shows that
the top 5 countries in terms of arrival rates are Colombia, Panama,
Bahamas, Norway, and Mexico, and constitute the most recurrent
countries to be reported in mal-activity involvement.

We also analyze the churn with respect to mal-activity classes.
From Figure 8a, we can observe that exploits tend to have reports
with the lowest mean lifetime (one week), while the rest of the
mal-activity classes are similar to each other with a heavier concen-
tration at longer weekly durations. In terms of resiliency, phishing
has the lowest deathtime (highest resiliency) as shown in Figure
8b. Due to lower mean deathtime, phishing also has the highest
mean rate of arrival indicated in Figure 8c, implying highly frequent
on-o� reporting cycles, i.e., reported (in)active behavior.

Lessons Learned. The analysis shows that a small number of hosts
exhibit high renewal of mal-activities, indicating their presence on
a blacklist has not deterred their activities. The most recurrent IP
has an average report activity cycle of 5.5 weeks. Had this host
been blocked by blacklists, it would have been removed from said
lists in less than 5.5 weeks from the �rst reports. Thus blacklists
can consider longer durations prior to delisting a malicious host.
Phishing has been observed with the highest resiliency to periods
of no reporting (on average 54 weeks less than all mal-activities
combined), again suggesting delisting or their ability to circumvent
blacklist-based blocking. A overwhelming majority (97.7%) of IP
reports cease activities in 2 weeks, with average cycles of 185 weeks,
the blacklist providermust tradeo� between potential false positives
of hosts which had only been momentarily infected, or curbing the
minority of recurrent hosts.

4.3 Magnitude of Reported Malicious Activities
We de�ne a “severity” metric to quantify the magnitude of the
reported activity during active periods of malicious hosts in the
blacklists. Formally, severity is de�ned as the average number of
reports of mal-activities per active cycle as per Figure 6. For host i ,
let Ki,c denote the total number of reports within the cth period of
activity5 and as before let Li,c denote the active period (in weeks).
Then severity of host i , is de�ned as the average of Ki,c/Li,c over
all cycles of the host i in the dataset. A high severity value indi-
cates that whenever a host is active (reported in the blacklists) it is
accompanied by a large volume of reported mal-activities. Severity
allows us to distinguish between long-living persistent reporting
of threats and short-living but denser reporting mal-activities.

We report the results of magnitude analysis in Figure 9. Observe
that 27.4% of ASes and 9.45% of countries have a severity value
equal to one indicating a unique malicious report per week. The
CDF in Figure 10b indicates that only a few hosts are participating

5Care has been taken to remove duplicate reports, i.e., same (time, IP, URL) tuple, from
Blacklist-07-17. In any case, potential duplicates in the 2M reports from Blacklist-07-17
dwarf in comparison to the 49M unique reports obtained from VT.
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# of reports in the cth period/cycle of activity of host i. 

Life-cycle in cth period of activity of host i: 
Persistent threat

Death-cycle:  
Resilient threat
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To further investigate the diversity of Mal-Activities, we calcu-
late the country a�nity which resulted in an even lower entropy
for PUP (0.105) and the highest entropy for Spammers (0.556). We
observe that US alone contributes 92% of the PUP activity in con-
trast to its contributions of 39% to the Spammers Mal-Activity. We
also note that US contributes 68% of the total Mal-Activities. Over-
all, a 92% of the Spammers Mal-Activities are distributed over 13
countries.

The high value of IP a�nity and the lower value of AS (resp.
country) a�nity suggest that PUP uses multiple IPs from a small
number of AS (resp. country) to in�ict PUP class of Mal-Activities.

Next, we measure the entropy of a host (i.e. IP, AS and country)
to identify whether there are hosts that are specialized to distribute
a certain class of Mal-Activities.

Specialization. The distribution of hosts across classes of Mal-
Activities is de�ned as normalized Entropy per host h as S(h) =
(�Õ

8a P(h) log2 P(h))/log2 k , where k is the number of activities
for host, h, and the probability P(h) is de�ned as:

S(h) = (�
’
8a

P(h) log2 P(h))/log2 k, (2)

P(h) = # of reports from host h with activity a
Total # of reports for host h

(3)

Strong specialization of hosting one particular Mal-ctivity class is
represented by higher S(h) value for a given host h.

Figure 3: IPs, ASes, and Countries Specialization
From Figure 3, we observe that 80% of IPs exclusively participate

in one class of Mal-Activities. When we analyze Mal-Activities at
the AS and country level, we observe a more uniform distribution
of the Mal-Activities within the hosts (i.e., ASes and countries).
We determine that 80% of countries participate in more than one
class of Mal-Activities while 55% of ASes participate in only one
class of Mal-Activities. We note that 0.04% (311) of IPs, 27.4% (54)
of countries, 2.12% (275) of ASes participate all six classes. On
closer look, we found that 96.8% of IPs, 87.7% of ASes and 74.4% of
countries have an entropy value at most 0.50. This suggests that a
substantial number of hosts will be biased toward one class of its
Mal-Activities.

4 TEMPORAL ANALYSIS
We now focus on the temporal evolution of Mal-Activities as re-
ported since January 2007.

4.1 Evolution of Mal-Activities
We analyze the cumulative volume of categories of Mal-Activities
in our dataset over time in Figure 4(a) (Note the y-axis log scale).
We also show the time coverage for our seed blacklists datasets in
Figure 4(b).

Perhaps not surprisingly, we observe that reportedMal-Activities
have been steadily increasing in volume over the last decade (The
Solid line in the Figures shows the cumulative total number of

repots), with an interesting spike around late 2008 driven by the
inception of Fraudulent services and Exploit kits. One of the earliest
kits was MPack[? ], a very popular “user-friendly” Exploit kit and
was introduced 2006. Typically, MPack included a collection of PHP
scripts aiming at exploiting Browsers’ security holes and commonly
used programs (e.g., Quicktime). Notably, the Spammers, while
showing not particular peaks, has been continuously and steadily
increasing in volume. The Phishing category has seen two distinct
periods of reporting. First, during 2009 and then in 2013 with an
increase in the total volume of reports by two orders of magnitude.
This is consistent with a report by AO Kastpersky Lab [? ] that
points to the growing popularity of digital payments that attracted
an unwanted attention by cybercriminals translated by a dramatic
increase in the number of �nance-related attacks.

(a) Evolution (b) Coverage
Figure 4: Time coverage of blacklists and evolution of Mal-
Activities in our dataset.

4.2 Modeling and analyzing the Churn of
reported IPs

Here, we aim to model occurrences of Mal-Activities in time. More
speci�cally we are interested in understanding the involvement of
hosts into a speci�c malicious activity over time.

The model: Consider a malicious ecosystem with n partici-
pating hosts, where each host i is either alive (i.e., present in the
system) or dead (i.e., logged o�/clean/not reported) at any given
time t . An active host can be reported one or multiple times as
being malicious (denoted k). This behavior can be modeled by an
alternating renewal process Zi (t) for each host i similar to Yao et
al., [? ]’s Churn model :

Zi (t) =
8>>><
>>>:
k ,

host i has received
k reports at time t

0, Otherwise
, 1  i  n (4)

where n is the total number of hosts in our dataset and t is in
weeks. Hence, our traces are created by binning the reports into
weeks and per reported host (here host may refer to IP, AS number
or Country of the reported IP).

Our model is illustrated in Figure 5 where variable c stands
for the cycle number and durations of host i’s ON (life) and OFF
(death) periods are given by random variables Li,c > 0 and Di,c > 0,
respectively.We adopt the samemodeling assumptions as in [? ] and
assume that all lifetime (i.e., {Li,c8c}) and o�time (i.e., {Di,c8c})
are i.i.d. sets of variables. For convenience of notation, we de�ne the

A Decade of Mal-Activity | Optus Macquarie University Cyber Security Hub + University of Michigan | Muhammad Ikram



23

Churn Analysis: Hosts
Life-cycle Time (LT) – persistency of hosts

Table 4: Churn Analysis: Top 5 IPs, ASes, and Countries (CC) of Lifetime, Deathtime, and Rate of Arrival.

(a) Average Lifetime - LT (Most Persistent)

IP LT ASN Organization LT CC LT

209.85.200.132 62 4134 CHINANET-BACKBONE, CN 147 US 511
74.125.201.132 52 4837 CHINA169-Backbone, CN 39 CN 56
209.85.234.132 48 9800 UNICOM, CN 38 BR 55
74.125.70.132 38 32613 IWEB-AS, CA 28 CA 38
74.125.202.132 37 28753 LEASEWEB-DE-FRA-10, DE 26 GB 38

(b) Average Deathtime - DT (Most Resilient)

IP DT ASN Organization DT CC DT

103.224.212.222 3.0 36351 SOFTLAYER, US 1.5769 US 0
69.172.201.153 3.1 26496 GO-DADDY, US 1.6087 DE 1.5
204.11.56.48 3.7 40034 CONFLUENCE-NET., US 1.6122 VG 1.6
213.186.33.19 3.9 13335 CloudFlare, Inc. VG 1.6780 FR 1.8
208.73.211.70 4.2 14618 AMAZON-AES, US 1.8298 NA 2.0

(c) Rate of Arrival - RoA (Most Frequently Active)

IP RoA ASN Organization RoA CC RoA

69.172.201.153 0.183 8001 NET-ACCESS-CORP, US 0.177 CO 0.156
103.224.212.222 0.176 9931 CAT-AP, TH 0.175 PA 0.148
208.73.211.70 0.164 46636 NATCOWEB, US 0.173 BS 0.142
213.186.33.19 0.150 13649 ASN-VINS, US 0.173 NO 0.138
213.186.33.2 0.146 31103 KEWWEB AG, DE 0.169 MX 0.138

(a) (b) (c)

Figure 7: Churn Analysis: CDFs of IPs, ASes, and Countries (CC) of Lifetime, Deathtime, and Rate of Arrival.

(a) (b) (c)

Figure 8: Churn Analysis: CDFs of Rate of Arrival (Reciprocal of mean duration), mean Lifetime, and mean Deathtime for
mal-activities.

in a plethora of mal-activities with as little as 200 IP addresses
reported to be involved in more than 10K malicious activities per
week. Figure 10c shows the CDF of the mean severity values for
each of the mal-activity classes. We observe that fraudulent services
are reported in the “low severity” range when compared to the rest
of the categories.

Table (a) of Figure 9 lists IP addresses, ASes, and countries with
high values of severity. US has the highest severity of 82,558 re-
ports per week. Distant second are countries like China, Germany,
France, and ukraine with severity values of 377, 212, 149, and 80,
respectively. This is likely due to the fact that the majority of host-
ing services and Internet users originate from the US. Interestingly
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Significant portion of IPs (86.4%) are short-lived in contrast 83% of countries, mostly African 
or island states, are persistently participating malicious activities
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in a plethora of mal-activities with as little as 200 IP addresses
reported to be involved in more than 10K malicious activities per
week. Figure 10c shows the CDF of the mean severity values for
each of the mal-activity classes. We observe that fraudulent services
are reported in the “low severity” range when compared to the rest
of the categories.

Table (a) of Figure 9 lists IP addresses, ASes, and countries with
high values of severity. US has the highest severity of 82,558 re-
ports per week. Distant second are countries like China, Germany,
France, and ukraine with severity values of 377, 212, 149, and 80,
respectively. This is likely due to the fact that the majority of host-
ing services and Internet users originate from the US. Interestingly
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Churn Analysis: Hosts
Death Time (DT) – resiliency of hosts

Table 4: Churn Analysis: Top 5 IPs, ASes, and Countries (CC) of Lifetime, Deathtime, and Rate of Arrival.
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Figure 8: Churn Analysis: CDFs of Rate of Arrival (Reciprocal of mean duration), mean Lifetime, and mean Deathtime for
mal-activities.

in a plethora of mal-activities with as little as 200 IP addresses
reported to be involved in more than 10K malicious activities per
week. Figure 10c shows the CDF of the mean severity values for
each of the mal-activity classes. We observe that fraudulent services
are reported in the “low severity” range when compared to the rest
of the categories.

Table (a) of Figure 9 lists IP addresses, ASes, and countries with
high values of severity. US has the highest severity of 82,558 re-
ports per week. Distant second are countries like China, Germany,
France, and ukraine with severity values of 377, 212, 149, and 80,
respectively. This is likely due to the fact that the majority of host-
ing services and Internet users originate from the US. Interestingly
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A few IPs are recurring participants in contrast most ASes and countries are repeating 
offenders 
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in a plethora of mal-activities with as little as 200 IP addresses
reported to be involved in more than 10K malicious activities per
week. Figure 10c shows the CDF of the mean severity values for
each of the mal-activity classes. We observe that fraudulent services
are reported in the “low severity” range when compared to the rest
of the categories.

Table (a) of Figure 9 lists IP addresses, ASes, and countries with
high values of severity. US has the highest severity of 82,558 re-
ports per week. Distant second are countries like China, Germany,
France, and ukraine with severity values of 377, 212, 149, and 80,
respectively. This is likely due to the fact that the majority of host-
ing services and Internet users originate from the US. Interestingly
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Churn Analysis: Hosts
Rate of arrival – freq. of host participation,

𝐿𝐿𝑖𝑖,𝑐𝑐+1𝐿𝐿𝑖𝑖,𝑐𝑐 𝐷𝐷𝑖𝑖,𝑐𝑐

𝑍𝑍𝑖𝑖(𝑡𝑡)
𝑡𝑡𝐾𝐾𝑖𝑖,𝑐𝑐

Figure 6: ChurnModel. Ki,c is the total number of reports in
the cth period of activity of host i.

are created by binning the reports into weeks per reported host
(recall that host refers to an IP, AS or CC).

The model is illustrated in Figure 6 where c stands for the cycle
number, and durations of host i’s ON (life) and OFF (death) periods
are given by variables Li,c > 0 and Di,c > 0, respectively. Unlike
the model in [58], we empirically evaluate (through our data) all
lifetime (i.e., {Li,c }1c=1) and o�-time (i.e., {Di,c }1c=1) durations by
averaging over all cycles in our dataset. We denote the average
lifetime as Li and the average deathtime as Di .

A high average lifetimewould re�ect a report of persistent threats
(or infection) generally referred to as bulletproof entities, since
their involvement in mal-activities is not interrupted for extended
durations (even after being reported). A low average deathtime
indicates resiliency of the reported host as the mal-activity quickly
recovers from a potential shutdown. The reciprocal of mean cycle
duration is representative of the rate of arrival of a particular host. It
indicates the frequency with which a host participates in, or leaves,
a class of mal-activity and is de�ned as: �i = 1

Li+Di
. Consider a

scenario where a malicious host is frequently joining and leaving a
group of reported botnets (i.e., in bursts), then both average lifetime
and average deathtime would be small, and hence �i would be
relatively large.

Figure 7 displays the CDFs of mean lifetime, mean deathtime
and reciprocal of mean duration per IP address, ASN and country in
the Blacklists. Figure 7a shows that 86.4% of the IPs are short-lived
o�enders with an average duration of just a week. As mentioned
earlier, we refrain from drawing conclusions on the time-based
behavior observed at an IP level due to the very likely dynamic IP
allocation over time. At an AS-level we found that 56.5% of the ASes
are short-lived with an average of one week duration of presence
in the blacklists. This number is drastically reduced to 17.4% for
countries, many of which are small African nations, or island states.

The long tails observed in the CDF of mean lifetime in Figure 7a
indicate that there are only a few hosts with an extended lifetime.
We report the IP addresses, ASes, and countries with the highest
lifetimes in Table 4(a). We observe that US has the longest mean
lifetime of 511 weeks by a large margin (China is ranked second at
55.8 weeks), showing a much higher persistence of reported mal-
activity in the US than any other country. Brazil, Canada and the
UK are the next most persistent countries with the longest average
lifetime of 54.8, 37.8 and 37.7 weeks, respectively. At an AS-level,
the most persistent reported AS is “China Telecom Backbone” with
147.0 weeks.

Figure 7b and Table 4(b) suggest that while most IP addresses
have a mean deathtime longer than 100 weeks indicating a low
participation, the “long head” indicates that only a few IPs are

recurring participants. Again with a focus on the AS and country
level, we observed that most ASes and countries are repeat o�enders
from the perspective of blacklist reporting. At the country level,
in terms of resiliency (low deathtime), US is ranked �rst with no
deathtime, followed by Germany (1.50) and British Virgin Islands
(1.60).

For the rate of arrival, we calculate the reciprocal of mean du-
ration and rank the countries accordingly. Table 4(c) shows that
the top 5 countries in terms of arrival rates are Colombia, Panama,
Bahamas, Norway, and Mexico, and constitute the most recurrent
countries to be reported in mal-activity involvement.

We also analyze the churn with respect to mal-activity classes.
From Figure 8a, we can observe that exploits tend to have reports
with the lowest mean lifetime (one week), while the rest of the
mal-activity classes are similar to each other with a heavier concen-
tration at longer weekly durations. In terms of resiliency, phishing
has the lowest deathtime (highest resiliency) as shown in Figure
8b. Due to lower mean deathtime, phishing also has the highest
mean rate of arrival indicated in Figure 8c, implying highly frequent
on-o� reporting cycles, i.e., reported (in)active behavior.

Lessons Learned. The analysis shows that a small number of hosts
exhibit high renewal of mal-activities, indicating their presence on
a blacklist has not deterred their activities. The most recurrent IP
has an average report activity cycle of 5.5 weeks. Had this host
been blocked by blacklists, it would have been removed from said
lists in less than 5.5 weeks from the �rst reports. Thus blacklists
can consider longer durations prior to delisting a malicious host.
Phishing has been observed with the highest resiliency to periods
of no reporting (on average 54 weeks less than all mal-activities
combined), again suggesting delisting or their ability to circumvent
blacklist-based blocking. A overwhelming majority (97.7%) of IP
reports cease activities in 2 weeks, with average cycles of 185 weeks,
the blacklist providermust tradeo� between potential false positives
of hosts which had only been momentarily infected, or curbing the
minority of recurrent hosts.

4.3 Magnitude of Reported Malicious Activities
We de�ne a “severity” metric to quantify the magnitude of the
reported activity during active periods of malicious hosts in the
blacklists. Formally, severity is de�ned as the average number of
reports of mal-activities per active cycle as per Figure 6. For host i ,
let Ki,c denote the total number of reports within the cth period of
activity5 and as before let Li,c denote the active period (in weeks).
Then severity of host i , is de�ned as the average of Ki,c/Li,c over
all cycles of the host i in the dataset. A high severity value indi-
cates that whenever a host is active (reported in the blacklists) it is
accompanied by a large volume of reported mal-activities. Severity
allows us to distinguish between long-living persistent reporting
of threats and short-living but denser reporting mal-activities.

We report the results of magnitude analysis in Figure 9. Observe
that 27.4% of ASes and 9.45% of countries have a severity value
equal to one indicating a unique malicious report per week. The
CDF in Figure 10b indicates that only a few hosts are participating

5Care has been taken to remove duplicate reports, i.e., same (time, IP, URL) tuple, from
Blacklist-07-17. In any case, potential duplicates in the 2M reports from Blacklist-07-17
dwarf in comparison to the 49M unique reports obtained from VT.
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Table 4: Churn Analysis: Top 5 IPs, ASes, and Countries (CC) of Lifetime, Deathtime, and Rate of Arrival.
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(b) Average Deathtime - DT (Most Resilient)

IP DT ASN Organization DT CC DT

103.224.212.222 3.0 36351 SOFTLAYER, US 1.5769 US 0
69.172.201.153 3.1 26496 GO-DADDY, US 1.6087 DE 1.5
204.11.56.48 3.7 40034 CONFLUENCE-NET., US 1.6122 VG 1.6
213.186.33.19 3.9 13335 CloudFlare, Inc. VG 1.6780 FR 1.8
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(c) Rate of Arrival - RoA (Most Frequently Active)
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Figure 7: Churn Analysis: CDFs of IPs, ASes, and Countries (CC) of Lifetime, Deathtime, and Rate of Arrival.
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Figure 8: Churn Analysis: CDFs of Rate of Arrival (Reciprocal of mean duration), mean Lifetime, and mean Deathtime for
mal-activities.

in a plethora of mal-activities with as little as 200 IP addresses
reported to be involved in more than 10K malicious activities per
week. Figure 10c shows the CDF of the mean severity values for
each of the mal-activity classes. We observe that fraudulent services
are reported in the “low severity” range when compared to the rest
of the categories.

Table (a) of Figure 9 lists IP addresses, ASes, and countries with
high values of severity. US has the highest severity of 82,558 re-
ports per week. Distant second are countries like China, Germany,
France, and ukraine with severity values of 377, 212, 149, and 80,
respectively. This is likely due to the fact that the majority of host-
ing services and Internet users originate from the US. Interestingly
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Significant portion of countries (70%) and ASes
(38%) are recurrent offenders in contrast 9% IPs
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in a plethora of mal-activities with as little as 200 IP addresses
reported to be involved in more than 10K malicious activities per
week. Figure 10c shows the CDF of the mean severity values for
each of the mal-activity classes. We observe that fraudulent services
are reported in the “low severity” range when compared to the rest
of the categories.

Table (a) of Figure 9 lists IP addresses, ASes, and countries with
high values of severity. US has the highest severity of 82,558 re-
ports per week. Distant second are countries like China, Germany,
France, and ukraine with severity values of 377, 212, 149, and 80,
respectively. This is likely due to the fact that the majority of host-
ing services and Internet users originate from the US. Interestingly
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Churn Analysis
Malicious Activities Classes

Table 4: Churn Analysis: Top 5 IPs, ASes, and Countries (CC) of Lifetime, Deathtime, and Rate of Arrival.
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Exploits have lowest mean lifetime (least persistent) in contrast Phishing 
reports are resilient (lowest death duration) and recurrent (highest RoA)
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Severity Metric and Analysis
Let’s have a closer look at ephemeral activities

• How to distinguish between long-living persistent threats and short-living but denser 
or aggressive malicious activities (resp. hosts)?

Hosts (resp. malicious activities) may 
be ephemeral but denser (spikes)
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Severity Metric and Analysis

• How to distinguish between long-living persistent threats and short-living but denser 
or aggressive malicious activities (resp. hosts)?
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Figure 5: Churn Model. Ki,c is the total number of reports in the
c th period of activity of host i .

average lifetime as: Li = E[{Li,c8c}] and the average death time
duration as: Di = E[{Di,c8c}].

Note that a long average lifetime would re�ect a persistent threat
(or infection) generally referred as bulletproof entities, as their
involvement in Mal-Activities is not disturbed for a long time even
though they have been reported. A low average deathtime indicates
some resiliency of the reported host as the malicious activity is
recovering relatively quickly from a potential shutdown (or a non-
involvement in Mal-Activities).

The reciprocal of mean cycle duration is representative of the
rate of arrival of a particular entity. It can be thought of as how
frequently this entity participates (or leaves) a class of malicious
activity and is de�ned as: �i = 1

Li+Di
. Consider a scenario where a

malicious host is frequently joining and leaving a group of botnets
(i.e., in bursts), then both average lifetime and average death-time
would be small, i.e., �i would be large as the value of the dominator
would approach zero.

Figure 6 shows the CDF of mean lifetime, mean death-time and
reciprocal of mean duration per IP, ASN and country. The top �gure
shows that 80% of the IPs are one time o�enders (Solid line) with an
average duration of just a week. This number decreases drastically
if we consider ASN (55%) or country (20%).

The long tails observed in the CDF of mean lifetime in Figure 7(a)
for both IPs and ASes indicate that there are only a few entries
with a much longer lifetime duration. We report the IPs, ASNs, and
Countries with the highest Lifetimes in Table 4(a). We observe that
U.S exhibits by a large margin the longest mean Lifetime at 511
weeks (second ranked country is Russia at 33 weeks as mean life-
time), showing a much higher persistency of Mal-Activity presence
than any other country. Interestingly, we also note that the most
persistent AS at 55 weeks (AS3257) is “GTT Communications Inc”
and is located in Germany.

Figure 6(b) and Table 4(b) suggest that at a micro level, most IPs
have a mean death time bigger than 100 weeks indicating a single
participation, while the “long head” indicates that few hosts are
recurring participants. At a macro level, however, the mean death
time is greatly decreased indicating that most ASN and countries
are repeat o�enders.

At a country level and from a resiliency (deathtime), U.S. is
ranked �rst with no deathtime, followed by Germany (1.47), British
Virgin Islands (1.61). China, Ukraine, and U.K. as the most persistent
countries with the longest average lifetime of 43.8, 29.6 and 27.8
weeks3, respectively. The presence of British Virgin Islands, and to
some extent Ukraine was a surprise to us.

We calculate the reciprocal of mean duration (rate of arrival)
and rank the countries accordingly. Table 4(c) shows that top 5
arrival rates countries are Panama, Bahamas, Colombia, Bulgaria

3The observation period or bin is a week whilst the overall analysis time-period is
from 2007 to 2017.

and Germany with arrival rates of 0.15, 0.14, 0.14, 0.12, 0.12 (time
bins are in weeks), respectively. This suggests that these countries
are amongst the most recurrent countries involved in Mal-Activity.
This also suggests that prior reports [? ? ? ? ? ] focusing on volumes
of observed threats, capped over a period of time, would fail to
depict a complete picture of the threat landscape by overlooking
possible emergent actors.

We then analyse the churn of IP with respect to Mal-Activity
category. From Figure 7(a), we can observe that Exploits tend to have
a larger proportion of its IPs with the lower 1 week mean lifetime,
whilst the other types of Mal-Activities exhibit a similar behavior
between themselves with a heavier concentration at longer weeks.
In terms of resiliency, Phishing is the type of Mal-Activity with the
lowest death-time (Highest Resiliency), whilst Malware alongside
other categories exhibits similar but lower mean death-times as
shown in Figure 7(b). Due to lower mean death-time, Phishing also
has the highest mean rate of arrival according to Figure 7(c).

4.3 Severity of Mal-Activities
Severity is de�ned as the number of reports of Mal-Activities for a
given lifetime period. Formally, severity is de�ned as,

si = E

"
Ki,c
Li,c

8c
#
, (5)

where Ki,c is the total number of reports within the cth period
of activity (i.e, area under the curve) of host i . Severity allows to
distinguish between long-living persistent threats and short-living
but denser Mal-Activities.

We report the results of severity in Figure 8(a) and Table 8. We
observe that 60% of IPs (respectively 37 and 13% for ASes and
Countries) have a severity value equal to one indicating a unique
malicious report per unit of time (week). The CDF in Figure 8(a)
indicates that while most hosts are only reported once, a few others
are participating in a plethora of Mal-Activities with as little as
15 IPs (only) reported to be involved in more than 1000 malicious
activity in a single week.

Figure 8(b) shows the CDF of the mean severity values for each
of the Mal-Activity categories. We observe that the Fraudulent
services have fewer IPs in the “low severity” range when compared
to the rest of the categories. Essentially, more than 70% of the IPs
involved in Fraudulent Services have a severity value higher than
1 report per week. The Phishing category of Mal-Activities seems
to be the one with the most prevalent set of IPs with 18% of them
having at least 10 reports per week.

In Table 5 lists IPs, ASes, and countries with high value of sever-
ity. The table suggests that the US has the highest severity of 9,218
reports per week. We also observe countries like China, Germany,
Kosovo, and Ukraine have severity values 85, 69, 41, and 37, respec-
tively. Similarly, we observe AS7415 (Integral Ad Science, US) has
the 771 Mal-Activities per lifetime with average 96% of AV-Score of
Mal-Activities. Similarly, IP 174.31.26.214 which is administered
by AS16276 (OVH, France) has the highest severity value of 3137
Mal-Activities per liftetime with average AV-Score 89%. Overall US,
has the highest severity value, but we also observe that the severity
decreases from IPs to ASes to countries.

𝐿𝐿𝑖𝑖,𝑐𝑐+1𝐿𝐿𝑖𝑖,𝑐𝑐 𝐷𝐷𝑖𝑖,𝑐𝑐
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𝑡𝑡𝐾𝐾𝑖𝑖,𝑐𝑐

Figure 6: ChurnModel. Ki,c is the total number of reports in
the cth period of activity of host i.

are created by binning the reports into weeks per reported host
(recall that host refers to an IP, AS or CC).

The model is illustrated in Figure 6 where c stands for the cycle
number, and durations of host i’s ON (life) and OFF (death) periods
are given by variables Li,c > 0 and Di,c > 0, respectively. Unlike
the model in [58], we empirically evaluate (through our data) all
lifetime (i.e., {Li,c }1c=1) and o�-time (i.e., {Di,c }1c=1) durations by
averaging over all cycles in our dataset. We denote the average
lifetime as Li and the average deathtime as Di .

A high average lifetimewould re�ect a report of persistent threats
(or infection) generally referred to as bulletproof entities, since
their involvement in mal-activities is not interrupted for extended
durations (even after being reported). A low average deathtime
indicates resiliency of the reported host as the mal-activity quickly
recovers from a potential shutdown. The reciprocal of mean cycle
duration is representative of the rate of arrival of a particular host. It
indicates the frequency with which a host participates in, or leaves,
a class of mal-activity and is de�ned as: �i = 1

Li+Di
. Consider a

scenario where a malicious host is frequently joining and leaving a
group of reported botnets (i.e., in bursts), then both average lifetime
and average deathtime would be small, and hence �i would be
relatively large.

Figure 7 displays the CDFs of mean lifetime, mean deathtime
and reciprocal of mean duration per IP address, ASN and country in
the Blacklists. Figure 7a shows that 86.4% of the IPs are short-lived
o�enders with an average duration of just a week. As mentioned
earlier, we refrain from drawing conclusions on the time-based
behavior observed at an IP level due to the very likely dynamic IP
allocation over time. At an AS-level we found that 56.5% of the ASes
are short-lived with an average of one week duration of presence
in the blacklists. This number is drastically reduced to 17.4% for
countries, many of which are small African nations, or island states.

The long tails observed in the CDF of mean lifetime in Figure 7a
indicate that there are only a few hosts with an extended lifetime.
We report the IP addresses, ASes, and countries with the highest
lifetimes in Table 4(a). We observe that US has the longest mean
lifetime of 511 weeks by a large margin (China is ranked second at
55.8 weeks), showing a much higher persistence of reported mal-
activity in the US than any other country. Brazil, Canada and the
UK are the next most persistent countries with the longest average
lifetime of 54.8, 37.8 and 37.7 weeks, respectively. At an AS-level,
the most persistent reported AS is “China Telecom Backbone” with
147.0 weeks.

Figure 7b and Table 4(b) suggest that while most IP addresses
have a mean deathtime longer than 100 weeks indicating a low
participation, the “long head” indicates that only a few IPs are

recurring participants. Again with a focus on the AS and country
level, we observed that most ASes and countries are repeat o�enders
from the perspective of blacklist reporting. At the country level,
in terms of resiliency (low deathtime), US is ranked �rst with no
deathtime, followed by Germany (1.50) and British Virgin Islands
(1.60).

For the rate of arrival, we calculate the reciprocal of mean du-
ration and rank the countries accordingly. Table 4(c) shows that
the top 5 countries in terms of arrival rates are Colombia, Panama,
Bahamas, Norway, and Mexico, and constitute the most recurrent
countries to be reported in mal-activity involvement.

We also analyze the churn with respect to mal-activity classes.
From Figure 8a, we can observe that exploits tend to have reports
with the lowest mean lifetime (one week), while the rest of the
mal-activity classes are similar to each other with a heavier concen-
tration at longer weekly durations. In terms of resiliency, phishing
has the lowest deathtime (highest resiliency) as shown in Figure
8b. Due to lower mean deathtime, phishing also has the highest
mean rate of arrival indicated in Figure 8c, implying highly frequent
on-o� reporting cycles, i.e., reported (in)active behavior.

Lessons Learned. The analysis shows that a small number of hosts
exhibit high renewal of mal-activities, indicating their presence on
a blacklist has not deterred their activities. The most recurrent IP
has an average report activity cycle of 5.5 weeks. Had this host
been blocked by blacklists, it would have been removed from said
lists in less than 5.5 weeks from the �rst reports. Thus blacklists
can consider longer durations prior to delisting a malicious host.
Phishing has been observed with the highest resiliency to periods
of no reporting (on average 54 weeks less than all mal-activities
combined), again suggesting delisting or their ability to circumvent
blacklist-based blocking. A overwhelming majority (97.7%) of IP
reports cease activities in 2 weeks, with average cycles of 185 weeks,
the blacklist providermust tradeo� between potential false positives
of hosts which had only been momentarily infected, or curbing the
minority of recurrent hosts.

4.3 Magnitude of Reported Malicious Activities
We de�ne a “severity” metric to quantify the magnitude of the
reported activity during active periods of malicious hosts in the
blacklists. Formally, severity is de�ned as the average number of
reports of mal-activities per active cycle as per Figure 6. For host i ,
let Ki,c denote the total number of reports within the cth period of
activity5 and as before let Li,c denote the active period (in weeks).
Then severity of host i , is de�ned as the average of Ki,c/Li,c over
all cycles of the host i in the dataset. A high severity value indi-
cates that whenever a host is active (reported in the blacklists) it is
accompanied by a large volume of reported mal-activities. Severity
allows us to distinguish between long-living persistent reporting
of threats and short-living but denser reporting mal-activities.

We report the results of magnitude analysis in Figure 9. Observe
that 27.4% of ASes and 9.45% of countries have a severity value
equal to one indicating a unique malicious report per week. The
CDF in Figure 10b indicates that only a few hosts are participating

5Care has been taken to remove duplicate reports, i.e., same (time, IP, URL) tuple, from
Blacklist-07-17. In any case, potential duplicates in the 2M reports from Blacklist-07-17
dwarf in comparison to the 49M unique reports obtained from VT.

9

• We define, Severity -- average number of reports of mal-activities per active cycle, 

# of reports in the cth period/cycle of activity of host i. 

Life-cycle in cth period of activity of host i: 
Persistent threat

A Decade of Mal-Activity | Optus Macquarie University Cyber Security Hub + University of Michigan | Muhammad Ikram



29

Severity Metric and Analysis: Hosts

Figure 9: Magnitude analysis of top 5 IPs, ASes, and Coun-
tries.

ASN Organization Mag. CC Mag.

7276 UNIVERSITY-OF-HOUSTON 2206 US 82558
6762 SEABONE-NET, IT 2153 CN 377
16509 AMAZON-02 1817 DE 212
35994 AKAMAI-AS 1707 FR 149
53684 FLASHPOINT-SC-AS 1607 UA 80

(a) Top AS, Countries (CC) magnitude o�enders

(b) Hosts

(c) Mal-Activities

we observe AS7276 (UNIVERSITY-OF-HOUSTON) with 2206 mal-
activities per week as the AS with the highest severity. They were
reported to have participated in all categories of mal-activities ex-
cept Spammers, with 59785 reports in the dataset.

We can observe a large portion of the reported mal-activities
originate from potentially misusing cloud provider services (e.g.,
Amazon Cloud) as these providers are unlikely to be intentionally
propagating their own mal-activity. This inference is consistent
with observations made in previous work [54].
Lessons Learned. Our analysis shows that malware has been the
largest component of reports (90.9%), see Table 2, but when con-
sidering the severity of reports, Malware on average produces 30.8
reports per week, phishing has the next largest severity, with 9.3
reports per week, despite only consisting of 4.74% of our dataset.
On average, malware is approximately 3 times as severe as phishing,
despite there being 19 times more malware reports than there is
Phishing reports. It would be advisable for enforcement agencies
to focus on the primary attack vector that is malware, as disabling
a malware source would yield the largest reduction of reports per
week. Not to discount the impact of shutting down a phishing host,
it too receives a third of the reports as the most severe mal-activity.

5 RELATEDWORK
Anumber of studies have characterized andmeasuredmal-activities,
in addition to proposing detection and/or prevention techniques.
Researchers have also proposed general approaches that rely either
on fundamental characteristics of botnet tra�c or by correlating
meta-datasets. For example, several works detect botnets-based
mal-activities by investigating their tra�c [34] or typical behav-
ior [56][47][40][60]. Others have investigated multiple datasets
including host and network information [59][52], honeypots [50]
or DNS tra�c [57]. Kuhrer et al. [43] analyze the performance of
blacklists, with a forwards-facing collection of data by archiving it
for a duration of two years. In this paper, we revisit the blacklists
utilized by them and with additional sources, collect a backwards-
facing dataset, which is collected post-factum, covering 10 years
prior. Our analysis of the resulting dataset diverges as we perform
the retrospective characterization and measurement of (di�erent
classes of) mal-activities.

Using regional Internet registry (RIR) dataset spanning over a
period of 12 years, Dhamdhere et al., [38] de�ne two metrics (at-
tractiveness and repulsiveness) to describe the relationship among
ASes. Compared to our work, Dhamdhere et al., do not focus on
mal-activity reporting, instead focusing on the AS ecosystem as a
whole. Antonakakis et al. [33] study the behavior of Mirai Botnet
activity with a dataset collected in 2016 by industrial partners, to ob-
serve the resilience of Mirai botnet against reverse engineering and
takedowns. Unfortunately this dataset, owned by Symantec, is not
available for further research, and only focuses on a speci�c type of
mal-activity, whilst our analysis covers six di�erent classes. Leita
et al., [44] propose “HARMUR” a system that leverages historical
archives of malicious URLs collected by Symantec to detect mal-
activities. In conjunction with publicly available blacklists, DNS
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scanning service to resolve false-positives, for the collection of
malicious URLs. Their proposal retains a large-scale analysis of
the collected dataset as future work, however there has been no
mention of this dataset to date. It should be noted that HARMUR
leverages the historical information for the purpose of classifying
newly observed URLs, and thus is considered forwards-facing.

By analyzing logs generated by dynamic analysis of malware
samples spanning over a period of 5 years, Lever et al. [45] inves-
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gories of mal-activities. In contrast, our study retrieves static data
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Severity Metric and Analysis: 
Malicious Activities Classes

Fraudulent services are reported in the “low severity” range; probably evading detection
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More Insights, Dataset and Code

https://internetmaliciousactivity.github.io
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1. Why we need enriched cybersecurity dataset?

2. Large Scale Cybersecurity Data Collection and 
Enrichment Process

3. Insights

1. Characterization

2. Temporal Analysis

4. Moving forward: How can we leverage this 
dataset to improve detection systems
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Cybersecurity Use-case

• Graph analytics/machine learning to detect and prevent subgraph of malicious actors

Phishing IP referrers Exploits kits on IPs
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Cybersecurity Use-case

• Internet traffic (mal)mis-direction prediction and malicious host behavior prediction
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Question(s)?

https://internetmaliciousactivity.github.io

For details and further info:

Muhammad Ikram
(Muhammad.Ikram@mq.edu.au)

https://internetmaliciousactivity.github.io/

