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Security and privacy of the users have become significant concerns due to the involvement of the Internet of
Things (IoT) devices in numerous applications. Cyber threats are growing at an explosive pace making the
existing security and privacy measures inadequate. Hence, everyone on the Internet is a product for hackers.
Consequently, Machine Learning (ML) algorithms are used to produce accurate outputs from large complex
databases, where the generated outputs can be used to predict and detect vulnerabilities in IoT-based systems.
Furthermore, Blockchain (BC) techniques are becoming popular in modern IoT applications to solve security
and privacy issues. Several studies have been conducted on either ML algorithms or BC techniques. However,
these studies target either security or privacy issues using ML algorithms or BC techniques, thus posing a
need for a combined survey on efforts made in recent years addressing both security and privacy issues using
ML algorithms and BC techniques. In this paper, we provide a summary of research efforts made in the past
few years, starting from 2008 to 2019, addressing security and privacy issues using ML algorithms and BC
techniques in the IoT domain. First, we discuss and categorize various security and privacy threats reported in
the past twelve years in the IoT domain. We then classify the literature on security and privacy efforts based
on ML algorithms and BC techniques in the IoT domain. Finally, we identify and illuminate several challenges
and future research directions using ML algorithms and BC techniques to address security and privacy issues
in the IoT domain.
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1 INTRODUCTION
We have seen the industries to evolve from manufacturing just the products to building the network
of products known as the Internet of Things (IoT), and eventually creating an intelligent network of
products providing various, invaluable online service [27, 63]. As per Aksu et al. [7], two devices
are connected to the Internet every three minutes. This connectivity and the exponential growth
of IoT devices have resulted in an increased amount of network traffic. Due to this connectivity,
challenges like security and privacy of user data and verification and authentication of devices, have
arisen [117]. For example, hackers compromised one billion yahoo accounts in 2013 [48]. In 2014,
one hundred and forty-five million eBay users were under attack [98]. Following the increasing
trend of attacks, in 2017, one hundred and forty-three million customers from Equifax had their
personal information stolen [144]. Similarly, as reported in [74], a five billion dollar toy industry in
2017 had their eight hundred and twenty thousand client accounts compromised. It also included
over two million voice recordings, out of which a few were held for ransom. The recent cyber
history is full of cybersecurity disasters, from massive data breaches to security flaws in billions of
microchips and computer system lockdowns until a payment was made [45]. There are a plethora
of security and privacy challenges for IoT devices, which are increasing every day. Hence, security
and privacy in complex and resource-constrained IoT environments are big challenges and need to
be tackled effectively.

The security challenges in IoT are increasing as the attacks are getting sophisticated day by day.
Milosevic et al. [94] highlighted that powerful computing devices, e.g., desktop computers, might be
able to detect malware using sophisticated resources. However, IoT devices have limited resources.
Similarly, traditional cybersecurity systems and software are not efficient enough in detecting small
attack variations or zero-day attacks [21], since both need to be updated regularly. Moreover, the
updates are not available by the vendor in real-time, making the network vulnerable. Machine
Learning (ML) algorithms can be employed to improve IoT infrastructure (such as smart sensors and
IoT gateways) [28], and also to improve the performance of cybersecurity systems [137]. Based on
the existing knowledge of cyber-threats, these algorithms can analyze network traffic, update threat
knowledge databases, and keep the underlying systems protected from new attacks [7, 135, 137].
Alongside using ML algorithms, the researchers have also started using revolutionary Blockchain
(BC) technique to protect the underlying systems [37, 38, 76–78, 84, 104, 129, 143]. Although ML
algorithms and BC techniques have been developed to deal with cyber threats in the IoT domain;
combining these two is something new that needs to be explored.

Privacy goes hand-in-hand with security. Price et al. defined privacy as an application-dependent
set of rules [103]. The authors elaborate that the rules on how the information can flow depend on the
involved entities, processes, frequency, andmotives to access data. There aremany applications, such
as wearable devices [7], Vehicular Area NETwork (VANET) [141], health-care [145], and smart-home
[31, 32, 119], that require providing security and protecting the privacy of personal information. For
example, in a crowdsensing application like VANET, the network is dependent on the data collected
from devices to make intelligent decisions on the latest traffic conditions. However, the users of
devices might be hesitant to participate due to inadequate privacy-preserving mechanisms and
related threats. Extensive research works based on ML algorithms and BC techniques [7, 37, 38, 76–
78, 84, 104, 129, 135, 137, 143] have been conducted in the past few years to protect data on devices
and preserve user’s privacy.
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Searching Keywords: 'Internet of Things' OR 'IoT' OR 'Machine Learning' OR 'Deep Learning' OR 'Blockchain" 

OR 'Security' OR ' Privacy"

Search Repositories: IEEE Xplore, Google Scholar, Elsevier, ACM, ProQuest

Top Journal 

or 

Conference

Survey Paper

is between 2008 

and 2019

Yes

IoT Domain
Yes

Selection Criteria:  

Paper is in English.

The use case is related to Internet of Things.

The paper has reviewed security or privacy threats in IoT.

The paper has reviewed IoT security or privacy solutions using either Machine Learning or Blockchain

Resultant paper:

Review of Existing Literature (2017-2019).

Latest IoT Threats targetted by researches in post 2016 studies.

Solution of the above threats and their classification as Privacy threats or Security Threats.

The tools used for above solutions is either Machine Learning or Blockchain.

Challenges to Machine Learning and Blockchain in IoT.

Future directions

80% post 2016 high quality paper references.

Fig. 1. Paper collection criteria.

Table 1. Contributions and gaps of all published survey papers from 2017 to 2019.

Authors [Ref.] Year IoT Security IoT Privacy Machine Learning Blockchain
Kshetri et al. [74] 2017 X ✓ X ✓
Banerjee et al. [14] 2018 ✓ X X ✓
Restuccia et al. [105] 2018 ✓ X ✓ X
Sharmeen et al. [114] 2018 ✓ X ✓ X
Xiao et al. [136] 2018 X ✓ ✓ X
Khan et al. [72] 2018 ✓ X X ✓
Reyna et al. [106] 2018 ✓ X X ✓
Panarello et al. [60] 2018 ✓ X X ✓
Kumar et al. [75] 2018 ✓ ✓ X ✓
Kouicem et al. [73] 2018 ✓ ✓ X ✓
Zhu et al. [146] 2018 X ✓ X ✓
Chaabouni et al. [21] 2019 ✓ X ✓ X
Hassija et al. [57] 2019 ✓ X ✓ ✓
Costa et al. [26] 2019 ✓ X ✓ X
Wang et al. [132] 2019 ✓ X X ✓
Ali et al. [9] 2019 ✓ ✓ X ✓
This Survey 2020 ✓ ✓ ✓ ✓

Paper collection: Figure 1 depicts the strategy of selecting articles for this study. Initially, using
the keywords and mentioned databases, the search was performed. The keywords such as IoT,
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Fig. 2. (a) Year-wise statistics of the selected survey papers between 2008 and 2019 inclusive. It shows that
most of the work only started recently. (b) Scope of our study highlighting the use of ML and BC techniques
to address security and privacy issues in IoT domains.

Internet of Things, privacy, security, machine learning, and blockchain were utilized to download
the latest articles from the top journals and conferences. In order to qualify for selection, a paper
must satisfy all of the following conditions: (i) published between 2008-2019 (inclusive); (ii) be a
generic (not application specific) IoT survey paper; (iii) discussed security or privacy threats related
to IoT and (iv) covered ML and/or BC as a computing paradigm. The year-wise articles selection
statistics are depicted in Figure 2a.

Contributions of the paper: This paper provides a detailed review of ML algorithms and BC
techniques employed to protect IoT applications from security and privacy attacks. Based on the
review, we highlight that a combination of ML algorithms and BC techniques can offer more
effective solutions to security and privacy challenges in the IoT environment. To the best of our
knowledge, this is the first paper that presents a review of security and privacy vulnerabilities in
the IoT environment and their countermeasures based on ML algorithms and BC techniques. A
road map of our paper is depicted in Figure 3, while Figure 2b illustrates the scope of this survey
paper.
To cover the gaps in current literature (as summarized in Table 1), the major contributions of

this paper can be summarized as follows.
• We provide a generic classification of IoT threats reported in recent literature based upon
security and privacy threats.

• We classify literature reviews on ML algorithms and BC techniques for IoT security and
privacy, and highlight the research gaps in the existing literature reviews as in Tables 4, 5
and 6.

• We provide a taxonomy of the latest security and privacy solutions in IoT usingML algorithms
and BC techniques.

• We also identify and analyze the integration of ML algorithms with BC techniques to
strengthen security and privacy in IoT.

• Finally, we highlight and discuss existing challenges to ML algorithms and BC techniques in
IoT security and privacy with an attempt to suggest some future directions.

The rest of this paper is organized as follows. In Section 2, the classification of well-known IoT
threats is presented. In Section 3, we categorize literature reviews on IoT security and privacy
using ML algorithms and BC techniques. Section 4 presents the latest solutions to IoT security and
privacy threats, whereas research challenges for techniques based on ML and BC to solve security
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Fig. 3. Roadmap of our study.

and privacy issues are presented in Section 5. Finally, in Section 6, we conclude by presenting the
gaps with some future directions.
2 THREATS IN IOT
IoT refers to a large number of heterogeneous sensing devices communicating with each other,
either in a LAN or over the Internet [58]. IoT threats are different from conventional networks,
significantly due to the available resources of end devices [66]. IoT devices have limited memory
and computational power, whereas the conventional Internet comprises powerful servers and
computers with plentiful resources. Due to this, a traditional network can be secured by multi-
factor security layers and complex protocols, which is what a real-time IoT system cannot afford.
In contrast to traditional networks, IoT devices use less secure wireless communication media such
as LoRa, ZigBee, 802.15.4, and 802.11a/b/n/g/p. Lastly, due to application-specific functionality and
lack of common OS, IoT devices have different data contents and formats, making it challenging to
develop a standard security protocol [88]. All these limitations make IoT prone to multiple security
and privacy threats, thus opening venues for various types of attacks.
The probability of an attack in a network increases with the network size. Therefore, the IoT

network has more vulnerabilities than a traditional network, for example, a company office. Addi-
tionally, IoT devices communicating with each other are usually multi-vendor devices with different
standards and protocols. The communication between such devices is a challenge, which requires
a trusted third party to act as a bridge [17]. Moreover, several studies have raised the concern of
regular software updates to billions of smart devices [42, 76].
The computational resources of an IoT device are limited, so the capabilities of dealing with

advanced threats are degraded. To summarize, IoT vulnerabilities can be categorized as specific
and common. For example, vulnerabilities like battery-drainage attack, standardization, and lack of
trust are specific to IoT devices, and Internet-inherited vulnerabilities can be regarded as common
vulnerabilities. Several IoT threats and their categorization have been introduced in the past [19, 95,
105, 136, 137]. We discuss the most common threats in IoT reported in the past decade and attempt
to classify them into security and privacy categories.
2.1 Security Threats
The fundamental concepts of security and privacy revolve around the CIA triad of Confidentiality
of the data, Integrity of data, and Availability of the network [18, 101, 140]. In IoT, data can be
anything, for example, a user’s identity information, packets sent from a surveillance camera
to a destination server, a command given by a user to its car using a key-fob, or a multimedia
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IoT-specific Threats

IoT Threats

Internet-inhereted 

Threats

Violation

Confidentiality

Integrity

Availability

Eavsedropping, 

Impersonation, Sniffing, 

Tampering, Data Leakage 

....

Flooding, DDoS, Botnet, 

Physical, Spoofing, 

Tampeing, Virus, Worms 

.....

Privacy Attacks

Security Attacks

Fig. 4. Types of IoT threats may violate either of CIA triad; integrity & availability are associated with security
attacks, while confidentiality compromise is known as privacy attack.

conversation between two people. Any unauthorized disclosure of data may result in a violation of
either confidentiality, integrity, or availability. If a threat is impacting confidentiality, it is a privacy
threat. The security threats affect both data integrity and network availability. Figure 4 depicts
different classes of security and privacy threats in IoT domains.
2.1.1 Denial of Service. Denial of Service (DoS) has the most straightforward implementation
among all the security attacks comparatively. Furthermore, the ever-growing number of IoT devices
with weak security features has made DoS a favorite tool for attackers. The core objective of
a DoS attack is to ingest the network with invalid requests, resulting in exhausting network
resources, such as bandwidth consumption. As a result, the services are unavailable to genuine
users. Distributed DoS (DDoS) is an advanced version of the DoS attack, where multiple sources
attack a single target making it more difficult to trace and avoid the attack [1, 30, 112, 122, 123, 126].
Although there are different types of DDoS attacks, they all have the same objective. Few variants
of DDoS attacks are SYN flooding [67] (in which an attacker sends successions of SYN requests to
a target), Internet Control Message Protocol (ICMP) attacks [34] (in which large number of ICMP
packets are broadcasted using the victim’s spoofed IP), crossfire attacks [107] (using a complex
and massively large-scale botnet for attack execution) and User Datagram Protocol (UDP) flooding
attacks [71] (sending a large number of UDP packets to random ports on a remote victim). Botnet
attack [96] is a type of DDoS attack in an IoT network. The botnet is a network of IoT nodes
(devices) that are compromised to launch an attack on a specific target, for example, a bank server.
Botnet attack can be executed on different protocols, particularly Message Queuing Telemetry
Transport (MQTT), Domain Name Server (DNS), and Hypertext Transfer Protocol (HTTP), as
briefed in [96]. Several techniques to prevent DoS in the IoT environment are suggested. Diro et
al. [30] have utilized the self-learning characteristics of Deep Learning (DL) methods to detect an
attack in the fog-to-things environment. In another study, Abeshu et al. [1] suggested controlling
the DDoS attack by employing distributed DL on fog computing. Intrusion Detection System (IDS)
by Tan et al. in [122, 123] is a series of research efforts to mitigate DDoS attacks using modern ML
and DL algorithms. Sharma et al. and Tselois et al. [112, 126], respectively, pointed out the issues of
flooding in Software Defined Networks (SDN). The study highlighted that the SDN’s top layer was
prone to brute force attacks due to the lack of authentication in the plain-text TCP channel.
2.1.2 Man-in-the-middle. Man-in-the-middle (MiTM) attacks are one of the oldest attacks in the
cyber world [121]. Spoofing and impersonation can be categorized as MiTM attacks. For example,
a node X intending to communicate with destination B might be communicating with the MiTM
attacker, who is impersonating to be destination B. Similarly, in SSL striping, an attacker can
capitalize on such attacks to connect themselves with the server using an HTTPS connection,
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but with the target on an unsecured HTTP connection. Recently, many studies have focused
on improving the security against MiTM attacks [4, 11, 24, 130? ]. Ahmad et al. [4] discussed a
healthcare scenario, where a patient gets an insulin dosage automatically. Such an application
is vulnerable to MiTM attack, which can prove fatal. For instance, Tang et al. [? ] identified
vulnerabilities in mobile apps’ network service libraries, which can potentially expose apps’ traffic
to MiTM attacks. Similarly, in line with the impersonation attacks, Chatterjee et al., [24] highlighted
existing methods of authentication in wireless mobile devices that used a secret key. This key was
saved in non-volatile memory and used for digital signatures or hash-based encryption. Apart from
being vulnerable, this technique was power inefficient. Similarly, the most recent and widely used
IoT protocol, called OAuth 2.0, suffers from cross-site-recovery-forgery (CSRF) attacks. The OAuth
protocol manually authenticates devices, which is a time-consuming process. Another study by
Wang et al. [130] mentioned physical-layer security vulnerability in wireless authentication. They
argued that the existing hypothesis test to compare radio channel information with channel record
of Alice to detect a spoofer Eve in wireless networks, is often unavailable, particularly in dynamic
networks.
2.1.3 Malware. Malware is an abbreviation of malicious software. Over the last couple of years,
the number of IoT devices is growing along with frequent IoT software patches, which may be
leveraged by an attacker to install malware on a device and perform malicious activities. Malware
is generally understood to exist as a virus, spyware, worm, trojan horse, rootkit, or malvertising
[88, 142]. Smart home products, healthcare devices, and vehicular sensors are a few examples that
can be compromised. Azmoodeh et al. [13] studied malware on the Internet of Battlefield Things
(IoBT). Such attackers are usually state-sponsored, better-resourced, and professionally-trained.
Aonzo et al. [12], Feng et al. [40], and Wei et al. [133] attempted to defend resource-constrained
android devices from malware attacks by using different supervised ML algorithms. Studies in
[52, 76, 114] provided a detailed analysis of malware detection and highlighted several security
loopholes in the Android platform, especially on the application layer, which has applications with
several types of components.
2.2 Privacy Threats
In addition to security threats, IoT users and their data are prone to privacy attacks, such as sniffing,
de-anonymization, and inference attacks. In any case, the impact is on the confidentiality of data,
where data can be at rest or in motion. In this section, we discuss various privacy attacks.
2.2.1 MiTM. We believe that MiTM attacks can be classified into Active MiTM Attacks (AMA)
and Passive MiTM Attacks (PMA). The PMA passively listens to data transfer between two devices.
Although the PMA violate privacy, they do not alter the data. An attacker with access to a device can
silently observe formonths before attempting the attack.With the growing number of cameras in IoT
devices like toys, smartphones, and wristwatches, the impact of PMA, for example, eavesdropping
and sniffing, is immense. On the other hand, the AMA are actively involved in abusing the data
acquired by either interactingwith a user pretending to be someone else, for example, impersonation,
or accessing a profile without consent, for example, authorization attack.
2.2.2 Data Privacy. Similar to MiTM attacks, the data privacy attacks can be classified into Active
Data Privacy Attacks (ADPA) and Passive Data Privacy Attacks (PDPA). Data privacy is related to
data leakage [128], data tampering, identity theft, and re-identification [8]. The re-identification
attacks are also known as inference attacks and are based on de-anonymization attacks, location
detection, and aggregation of information [8]. In these attacks, hackers’ main goal is to gather data
from multiple sources and reveal the targets’ identities. Some attackers may use the collected data
to impersonate an individual target [136]. Any attack that alters data, such as data tampering, can
be classified as ADPA, while the re-identification and data leakage are examples of PDPA.
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A comparison between various security and privacy threats, their types, their impacts, and
possible solutions are summarized in Tables 2 - 3.

Table 2. Security threats in IoT

Threat Impact Attack Type Layer of Impact Solution

Security Availability DoS Flooding Physical, MAC Multiple
DDoS Physical, MAC Multiple
Botnet Physical, MAC Multiple

Physical Damage Physical Physical Security
Environmental Physical Shielding
Power Loss Physical uninterrupted power
Hardware Failure Physical Backup
Tampering Physical Physical Security

Integrity MiTM Sybil Attack Physical, MAC,
Network

code attestation, radio re-
sources testing, key pool

Spoofing Network anti-spoofing software
message tamper

Malware Injection Application
Virus Application
Worms Application

Table 3. Privacy threats in IoT

Threat Impact Attack Type Layer of Impact Solution

Privacy Confidentiality MiTM Eavesdropping Network Encryption
Impersonation Network Encryption
Sniffing Network Encryption
Authroization Application Access Control

Data Privacy Data Leakage Multiple
Re-identification Multiple data suppresion, generaliza-

tion, noise addition
Data tampering Multiple anonymization
Identity Theft Multiple anonymization

Others Poodle Transport Use TLSv1.2
Heartbleed Transport
Freak Transport Turnoff export ciphersuit op-

tions in browser

3 LITERATURE SURVEY
This Section provides an existing literature review and categorizes the efforts done based on ML
algorithms and BC techniques to address IoT security and privacy issues. This Section is divided
into two subsections, i.e., ML algorithms and BC techniques.
3.1 Existing review papers using Machine Learning Algorithms as a solution
Hackers are getting sophisticated with the evolving technology, making traditional methods of
attack-prevention cumbersome. The defense becomes more challenging for a resource-constraint
IoT device. To help in detecting these attacks, one of the widely used tools is ML algorithms. ML
can be defined as the ability to deduce knowledge from data, and adjust the output of an ML model,
based on that acquired knowledge [58]. ML makes machines smart enough by learning from their
past results and refining them to achieve improved results [127]. Several ML algorithms have proven
extremely helpful in mitigating security as well as privacy attacks. In the following subsections, we
discuss these approaches in detail.

3.1.1 Security Efforts. The technology has improved data communication and networking tech-
niques over the Internet. We have now state-of-the-art software-based configurable devices called
Software Defined Network (SDN) that can be customized to meet a customer’s needs. In this
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scenario, Restuccia et al. [105] attempted to present the taxonomy of existing IoT security threats
and their solutions in SDN using the ML algorithms. They also suggested that since the main task
of an IoT system is to collect data from IoT devices, it is feasible to divide the data collection process
into three steps, namely IoT authentication, IoT wireless networking, and IoT data aggregation &
validation. The study gave a brief review of ML algorithms used to mitigate the security attacks,
e.g., to detect cross-layer malicious attacks, Bayesian learning is used, and to assess the validity of
data, neural networks are used. However, the study lacks an in-depth analysis of the rest of the ML
algorithms.
Sharmeen et al. [114] aimed to assist application developers in using Application Program

Interfaces (APIs) safely, during the development of applications for Industrial IoT networks. To
detect malware, the authors suggested that the ML model could be trained by using three types
of features including static, dynamic, and hybrid. A detailed analysis of each feature type is done
using performance metrics of a dataset, features extraction technique, features selection criteria,
accuracy, and detection method. Several detection methods for each feature set were analyzed, but
the commonly used were RF, SVM, KNN, J48, and NB. Sharmeen et al. [114] concluded that hybrid
analysis offered flexibility in choosing both the static and dynamic features to improve accuracy in
the detection process. However, this paper is limited to one application (android device) and one
security threat (malware).
Costa et al. [26] selected papers between 2015 to 2018 and claimed that no work has presented

an in-depth view of the application of ML in the context of IoT intrusion detection. The study
reviewed the latest as well as traditional ML-based algorithms to improve IoT security. They also
presented the most commonly used datasets and methodologies employed in the paper related to
IoT security. The paper however has not reviewed the latest IoT security or privacy threats.
Similarly, Chaabouni et al. [21] also focused on the IoT based network intrusion detection

systems. The authors presented IoT architecture and layer-wise attacks, and classified them by
layers (perception layer, network layer and application layer) as well as design challenges (such as
heterogeneity, mobility, trust and privacy, resource constraints, connectivity and data interchange).
The traditional mechanisms to protect IoT were described, and the study focused on Anomaly and
Hybrid Network IDS (ANIDS) for IoT systems. A detailed comparison of traditional NIDS for IoT
systems architecture, detection methodologies, and experimental results was provided. The study
further presented how the Learning-based NIDS for IoT could overcome the challenges faced by
their equivalent traditional IoT systems. Finally, top IoT NIDS proposals were compared with a
focus on ML algorithms.

All of the above papers, as depicted in Table 4, are limited to security threats with a focus on ML
as a tool in solving the security issues. Our paper, as depicted in Figure 2a, covers a broader scope -
addressing security and privacy issues in IoT domains using ML and BC.

Table 4. List of survey papers on IoT security leveraging Machine Learning Algorithms.

Ref. Security Threats Proposed solution(s)
Restuccia et al. [105] DoS, MiTM A taxonomy and survey of IoT security research and their ML-based solutions
Sharmeen et al. [114] Malware Analysis of malware detection for Android mobile
Chaabouni et al. [21] Multiple A detailed analysis of traditional and ML-based NIDS for IoT.
Costa et al. [26] Multiple In-depth review of ML applications in the context of IoT intrusion detection.

3.1.2 Privacy Efforts. Machine Learning extracts useful information from the raw data, while
privacy is preserved by concealing the information [64]. According to Al-Rubaie et al. [8], ML
system has three modules: (i) input, (ii) computation, and (iii) output. The study further claimed that
privacy could only be preserved if all three modules were under the ownership of a single entity.
Nowadays, the data is collected worldwide by billions of IoT devices such as smart-phones, health
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monitoring sensors, speed cameras, and temperature sensors, hence a single-ownership condition
cannot be maintained. This issue spurred interest in researchers to work towards proposing newer
and improved privacy-preserving ML algorithms. For instance, the lack of privacy protection
mechanisms in a VANET environment was raised by Zhang et al. [141]. In VANET, Vehicle nodes
tend to learn collaboratively, raising privacy concerns, where a malicious node can obtain sensitive
data by inferring from the observed data. A single node has limited computational and memory
resources. The solution was presented by using collaborative IDS with distributed ML algorithms
and resolving the privacy issues by proposing the concepts of dynamic differential privacy to
protect the privacy of a training dataset.
People traffic monitoring systems and healthcare services are two of the most common IoT

sensing technologies, which need continuous improvements. The most effective and useful data
for such applications is directly collected from the users through Mobile CrowdSensing (MCS).
Xiao et al. [136] reviewed the privacy threats involved in MCS, where the information of interest
is extracted, and the participants upload sensing reports of their surroundings to the MCS server.
This information-sharing poses significant privacy threats to the participants and the MCS server.
The system is prone to privacy leakage (which is related to userâĂŹs personal information), faked
sensing attacks (sending fake reports to the server to reduce the sensing efforts) and advanced
persistent threats (causing privacy leakage over an extended period). The survey suggested Deep
Neural Network (DNN) and Convolutional Neural Network (CNN) for privacy protection, and Deep
Belief Network (DBN) and Deep Q-Network (DQN) for counter-measuring faked sensing. However,
the review was limited to only one application (MCS).

3.2 Existing review papers using Blockchain as a solution
Blockchain, often confused by some as a synonym to bitcoin, is the technology behind this in-
famous crypto-currency. It is a distributed ledger which stores the data in blocks. These blocks
are in order and linked with each other cryptographically forming a chain in a way that makes
it computationally infeasible to alter the data in a particular block [23]. This mechanism ensures
immutation, decentralization, fault-tolerance, transparency, verifiability, audit-ability, and trust
[25, 60]. There is no single consensus on the types of BC but most commonly they are public,
private, and consortium. Public or permission-less BC is open to everyone, so anyone can access
them [42]. On the other hand, Private/permissioned blockchains are controlled by one or few,
hence not everyone can access them, the transactions here are faster and only the selected few
are authorized to approve a transaction, hence reaching a consensus. Several reviews and survey
papers [14, 25, 33, 42, 60, 72, 74, 79, 88, 93, 106, 125, 139] are published to highlight the importance
of the BC techniques and could be a good source for those who are interested to read more about
BC in detail. A detailed comparison of current work is shown in Table 5 and 6. Most of these works
discussed either security or privacy issues. In this Section, we present the current literature reviews
on achieving security and privacy in IoT using BC techniques as a tool.

3.2.1 Security Efforts. Security has been the prime focus of attention for any IoT use cases. Lots of
work based on BC techniques have emerged to solve security issues in the IoT domain. A study on
IoT security was presented by Banerjee et al. [14], which is classified into security techniques such
as intrusion detection and prevention system (IDPS), collaborative security, and predictive security.
Furthermore, IDPS are classified by approaches, network structure, and applications. After that,
collaborative security and predictive security are discussed in detail. In the same study, collaborative
security techniques are classified by network structures and applications. Sequel to this study, the
integrity of existing IoT datasets is highlighted, and the authors suggested that a BC-based standard
should be developed to ensure integrity in the shared datasets.
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Table 5. List of survey papers on IoT security leveraging Blockchain techniques.

Ref. Year Security Threats Comments
Banerjee et al. [14] 2018 Several Classified post-2016 literature & discusses BC-based solutions
Khan et al. [72] 2018 Key management Categorization of threats & their BC-based solutions

access control were presented
Reyna et al. [106] 2018 DoS Challenges & Analysis of BC in IoT devices were mentioned
Panarello et al. [60] 2018 Multiple Comprehensive BC-IoT integrated security challenges and

emerging solutions were discussed
Kumar et al. [75] 2018 MiTM How BC can be a solution for IoT security issues, is discussed
Kouicem et al. [73] 2018 Multiple Provided BC-based solution to attain a “trio” of anonymity,

unlinkability, and intractability
Wang et al. [132] 2019 Multiple IoT layer-wise attacks discussed. BC-based security solutions

for IoT applications were discussed
Ali et al. [9] 2019 DoS Reviewed latest proposed BC-based IoT security solutions
Hassija et al. [57] 2019 Multiple A detailed survey of existing IoT security solutions is presented

In another study by Khan et al. [72], security issues related to key management, access control,
and trust management in IoT are discussed. Khan et al. [72] categorized the security threats into IoT
layers and presented their BC-based solutions. The IoT security issues were classified as low-level,
intermediate-level, and high-level security issues. Khan et al. [72] believes that jamming adversaries,
insecure initialization, spoofing, vulnerable physical interface, and sleep deprivation attacks are
the low-level security issues. Whereas, replay, RPL routing attacks, sinkhole, Sybil attack on
intermediate layers, transport-level end-to-end security, session establishment, and authentication
are intermediate-level security issues. The high-level security issues are insecure interfaces, CoAP
security with Internet, vulnerable software, and middleware security. The study then provided a
comprehensive mapping of all the above problems with the affected layers of IoT architecture and
proposed solutions for each one of them. In the end, the authors discussed how BC techniques
could be used to address and solve some of the most pertaining IoT security problems. This survey
highlighted the security risks involved in each IoT layer but lacked the discussion of providing
BC-based solutions for these security threats.
Similarly, Reyna et al. in [106] analyzed how BC techniques could potentially improve the

security (data reliability) in the IoT. The study mentioned security threats as one of the challenges
for BC techniques. The security threats mentioned in the study were majority attacks, double-spend
attacks, and DoS attacks. The study also provided highlights about the integration of IoT with
BC techniques, BC applications and BC platforms. However, the study did not cover several other
security attacks related to IoT, which was a limitation of this survey.
On the other hand Panarello et al. [60] comprehensively reviewed BC consensus protocols

in addition to security challenges and recent developments in IoT and BC integration. The past
literature was categorized based on application areas, which were supported by an extensive survey
of the latest BC-based solutions.
Kumar et al. [75] presented a brief overview of issues and challenges in IoT security, such as

spoofing and false authentication. Some of the advantages of BC for large scale IoT systems are
tamper-proof data, trusted and reliable communication, robustness, and distributed and delegated
data sharing. Sequel to that, the study has discussed the application-wise BC-based IoT challenges.

The authors of [73] highlighted security issues in IoT and provided their BC-based solutions. The
study first highlighted the IoT security requirements and its challenges in six different application
domains, like smart cities, healthcare, smart grids, transport, smart homes, and manufacturing. The
authors comprehensively discussed the taxonomy of IoT security solutions such as confidentiality
and availability. They also investigated the analysis of techniques that were suitable for each IoT
application.
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Table 6. List of survey papers on IoT privacy leveraging Blockchain techniques.

Ref. Year Privacy Threats Comments
Kshetri et al. [74] 2017 Identity management Highlighted how BC is superior to the current IoT ecosystem
Kumar et al. [75] 2018 Spoofing, authentication Presented IoT security and privacy issues and how BC can be a solution.
Kouicem et al. [73] 2018 Data Privacy Provided BC-based solution to attain a "trio" of anonymity,

unlinkability, and intractability
Zhu et al. [146] 2019 Data Privacy Highlighted challenges in traditional IdM systems and reviewed

their BC-based solutions
Hassan et al. [56] 2019 Multiple Comprehensively surveyed privacy preservation techniques of

BC-based IoT systems from application and implementation
Ali et al. [9] 2019 Data Privacy, MiTM Reviewed latest proposed BC-based IoT privacy solutions

Wang et al [132] highlighted the limitation of IoT security and provided comprehensive security
analysis on end devices, communication channels, network protocols, sensory data, DoS attack, and
software attacks. After presenting the existing BC technologies, the application of BC for IoT and
their challenges were discussed. The study also briefly discussed the security of IoT applications
using BC.

The potential benefits and motivations for developing a BC-based IoT framework are resilience,
adaptability, fault tolerance, security and privacy, trust and reduced maintenance cost. [9] The study
mentioned that the centralized IoT model is prone to DDoS attacks. Moreover, due to its architecture,
it has a single point of failure which is a threat to the availability of IoT services. Current IoT
security solutions are centralized because they involve trusting in third party security services
which bring in data integrity issues. Ali et al. highlighted how all of these issues can be solved by
using BC-based IoT security solutions.

A comparison of IT and IoT security, followed by a comprehensive classification of IoT applica-
tions and their security and privacy issues were discussed by Hassija et al. [57]. The study even
went ahead and discussed various possible security threats in IoT applications for four layers, i.e.,
(i) sensing, (ii) network (iii) middle-ware, and (iv) application. In the recommendations to improve
the IoT security, BC was also mentioned as one of the solutions. This paper is probably the closest
to our work, however, it is security-biased and does not focus on the IoT privacy issues in detail.
A table of the existing surveys focused on security using BC techniques for IoT applications is

compiled in Table 5.

3.2.2 Privacy Efforts. Previous studies, such as [43], used strong cryptographic measures to protect
against malicious third parties and provided accountable access to IoT. However, they did not use
either ML or BC as one of their tools. Kshetri et al. [74] highlighted how BC techniques can offer
better privacy-preserving solutions as compared to a traditional network for cloud-based services.
It also highlighted the superiority of BC in identity management and the provision of access control.
The study demonstrated how an attack on the IoT network could be contained using BC techniques.
However, a comprehensive privacy-preserving IoT threat model using BC techniques was missing
in this literature.
Kumar et al. [75] presented a brief overview of issues and challenges in IoT privacy, such as

data sharing. Sequel to that the work suggested the BC-based solutions to these challenges and
discussed several application areas for BC implementation. Although the work discussed challenges
to BC in the IoT application, it lacks a comprehensive discussion on the latest IoT security and
privacy threats.
The authors of [73] highlighted privacy issues in IoT and provided their BC-based solutions.

The main goal of privacy-preserving techniques was to attain a “trio” of anonymity, unlinkability,
and intractability. The main security services, for example, confidentiality, privacy and availability,
were addressed based on traditional cryptographic approaches. The study addressed the issues of
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data-sharing, data privacy, and userâĂŹs behavior in IoT, and discussed their solutions, for example,
data tagging, zero-knowledge proof, pseudonyms, and k-anonymity model.
Zhu et al [146] highlighted privacy vulnerabilities in a traditional Identity Management (IdM)

system, especially due to their centralized architecture, and reliability on the so-called trusted
third parties. These vulnerabilities may result in several privacy attacks such as phishing and data
leakage. The authors argued that traditional IdM systems can not be directly transplanted to IoT
environments due to some native IoT characteristics such as scalability, mobility, and compatibility.
Sequel to that the study highlighted the privacy challenges in traditional IdM systems and reviewed
their BC-based solutions.
Hassan et al. [56] provided a detailed overview of privacy issues in BC-based IoT systems.

The privacy attacks related to BC-based IoT networks such as Address reuse, Deanonymization,
Sybil attack, Message Spoofing, and Linking attacks were highlighted. The work also discussed
the implementation of the five most popular privacy preservation strategies (Encryption, Smart
Contract, Anonymization, Mixing, and Differential Privacy) within BC-based applications.
Ali et al. [9] reviewed the IoT privacy issues and their latest BC-based solutions. They raised

the privacy concerns in a centralized IoT model such as Data privacy and data confidentiality.
The existing centralized privacy solutions such as using a privacy broker, using group signatures,
applying k-anonymity, and pseudonyms, were all heavily dependent on third parties for their
services. To counter these issues, the study offered a comprehensive review of the BC-based IoT
privacy solutions.
4 SOLUTIONS TO IOT THREATS
Since the inception of the first virus (Creeper) in 1970 until the hack of Whatsapp on 15th May 2019
[99, 116] and later, security specialists have mitigated zero-day security or privacy threats [122, 142?
]. Regarding this, several solutions have been proposed to mitigate security and privacy issues.
However, in this Section, we focus on the recent literature proposing secure and privacy-preserving
techniques for the IoT domain. We discuss the solutions offered by first using ML algorithms as a
tool, then by utilizing BC techniques, and finally by the fusion of both.
4.1 Existing Solutions Using Machine Learning Algorithms
ML is used as a data processing pipeline in any framework. For example, data traffic entering a
network can be analyzed by an ML model to make an informed decision. The main components of
the ML threat model for IoT are shown in Figure 5. Additionally, the figure gives an overview of
target points, such as input and output, for an attacker. The input data from source to IoT nodes, and
IoT nodes to ML model can experience exploratory or poisoning attacks. At the output, integrity
and inversion attacks are possible [83]. Therefore, for a whole system to be completely immune to
attacks, it must be secured as well as privacy-preserved.

4.1.1 Security efforts. Several security solutions have been proposed using ML algorithms as a tool,
as shown in Table 7. To deal with the flooding attacks, Diro et al. [30] argued that fog-computing
reduced the risk of eavesdropping and MiTM attacks by restricting the communication to the
proximity of IoT devices. Capitalizing on this idea, they used the Long Short Term Memory (LSTM)
algorithm in their model as it can remember the older data. For binary classification, they compared
their results with LR using ISCX2012 dataset, which had 440,991 normal traffic instances and 71,617
DoS attack instances. The DL model LSTM took considerably more time to train than LR, but its
accuracy was 9% better. The second dataset used was AWID from [20], and consists of normal
traffic instances (1,633,190 training and 530,785 tests), injection attack instances (65,379 training
and 16,682 tests), flooding attack instances (94848 training and 8097 testings) and impersonation
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attack instances (48,522 training and 20,079 testings). After comparing LSTM against softmax for
multi-class classification, the resultant accuracy obtained was 14% improved.
In a similar study, Abeshu and Chilamkurti highlighted that the resource constraints of an IoT

device made it a potential threat to DoS attacks [1]. Classic ML algorithms are less accurate and
less scalable for cyber-attack detection in a massively distributed network such as IoT. Such a
massive amount of data produced by billions of IoT devices enable the DL models to learn better
than the shallow algorithms. The authors of [1] argued that most of the employed DL architectures
had used pre-training for feature extraction, which could detect anomalies and thus reduced the
workload of a network administrator. However, their work was focused on distributed DL through
parameters and model exchange for the applications of fog computing. Fog computing reduced
the load of computing power and storage space from the IoT devices. It is, therefore, the ideal
spot where an intrusion can be detected. The existing Stochastic Gradient Descent (SGD) for
fog-to-things computing needs parallel computing. Thus, the centralized SGD will choke due to
the massive amount of data in IoT. Therefore the study proposed a distributed DL-driven IDS using
NSL-KDD dataset, where the stacked auto-encoder (SAE) was used for feature extraction, and
soft-max regression (SMR) was used for the classification. Their study proved that the SAE as a DL
worked better than traditional shallow models in terms of accuracy (99.27%), FAR and DR. Both
Diro et al. [30] and Abeshu et al. [1] proved that the DL algorithms performed better than shallow
ML models.

As a first attempt to DoS detection, Tan et al. [122] used triangle-area-based technique to speed
up the feature extraction in Multivariate Correlation Analysis (MCA). Features were generated
to reduce the overhead, using the data that entered the destination network. Along with this,
the “triangle area map” module was applied to extract the geometrical correlations from a pair
of two distinct features to increase the accuracy of zero-day attack detection. In an attempt to
improve their results from [122], Tan et al. [123] used Earth Mover’s Distance (EMD) to find the
dissimilarities between observed traffic and a pre-built normal profile. The network traffic was
interpreted into images by feature extraction using MCA and analyzed to detect anomalies using
KDDCup99 and ISCX datasets. Using the sample-wise correlation, the accuracy of their results
obtained was 99.95% (KDD) and 90.12% (ISCX). However, the study neither revealed the data size nor
the effects of varying sample sizes. Moreover, MCA assumed the change to be linear, which was not
a realistic approach. Another form of DoS attack in IoT is called a botnet attack, which was explained
earlier in Section 2. To prevent botnet attacks against HTTP, MQTT (Message Queuing Telemetry
Transport), and DNS, the authors of [96] developed an IDS, which is an ensemble of DT, NB, and
ANN. Since the correntropy values of benign and malicious vectors were too close, it was decided
to use DT, NB, and ANN as they could classify such vectors efficiently. The performance metrics
were detection-rate and false-positive rate, for which their proposed ensemble was better than
every individual algorithm in that ensemble. For the datasets of UNSW and NIMS, the accuracies
achieved were 99.54% and 98.29%, respectively.
Similar to DoS attacks, the MiTM attacks are one of the most frequently occurring attacks

in an IoT network. In regard to this, a lot of technical solutions have been proposed for several
applications. The authors [4] have used LSTM RNN to prevent the impersonation attacks in a smart
healthcare scenario, since traditional feedforward neural networks cannot capture the sequence
and time-series data, due to their causal property. Moreover, the researchers solved the vanishing
gradient issue of RNN algorithm and improved accuracy. At first, the predicted value was calculated
based on the dataset log of three months (for a patient who is taking insulin injections). If the
predicted and calculated values differed for more than a certain threshold, then by using the
combination of DL and gesture recognition, the correct dosage was ensured. However, the detail of
the model and analysis was missing in their work.
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Similarly in another scenario to prevent the impersonation attacks, the authors of [24] utilized
Physical Unclonable Function (PUF), which is an inherent characteristic of silicon chips that is
unique and can be used as a basis of authentication in RF communication. During the manufacturing
phase, every transmitter inherits some unique features called offset from an ideal value. The authors
have used these offsets as their features to recognize the device, train their system on it, and then
detect the accuracy. Using ANN MATLAB toolbox, the performance metrics were calculated. With
the help of ML, the simulation results could detect 4,800 nodes transmitters with an accuracy of
99.9% and 10,000 nodes under varying channel conditions, with an accuracy of 99%. The proposed
scheme can be used as a stand-alone security feature, or as a part of traditional multi-factor
authentication. PUF is inherent and inexpensive and can significantly benefit IoT, wherein each
wireless sensor’s physical values can be stored in a secure server replacing traditional key-based
authentication. However, the authors in their approach have assumed the server storing the PUF
values is safe. Aminanto et al. used an unsupervised ensemble of ML algorithms using SVM, ANN,
and C4.5 for feature extraction and ANN as the classifier [11]. In their process of deep-feature
extraction and selection (D-FES), first, they used SAE to extract the features, then SVM, ANN, and
C4.5 were used for feature selection, and finally, ANN was used to classify. The study achieved an
accuracy of 99.92% by using AWID dataset, on which an earlier study by Kolias et al. [20] had the
worst accuracy for impersonation attack.

According to Statista [35], mobile phone users would reach close to three billion by 2020. This
increase in usage made mobile phones vulnerable to the malware attack [12, 13, 40, 114, 131, 133].
Azmoodeh et al. [13] believed that OpCodes could be used to differentiate benign-ware and malware.
Class-wise Information Gain (CIG) is used for feature selection because the global feature selection
causes imperfections, and even reduces system efficiency especially when the dataset is imbalanced.
They also claimed that this combination of OpCode and DL for IoT had never been explored. Using
Eigenspace and deep convolutional networks algorithms, 99.68% accuracy was achieved, with
precision and recall rates of 98.59% and 98.37%, respectively. Similarly, to mitigate malware, Wei
et al. [133] extracted the features using the dynamic analysis technique. They used application
functional classification to train the classifier for clean and malicious data, while, in the testing
phase, kNN was used to divide data into known categories. J48 decision tree and NB were used to
perform 10-fold cross-validation. Depending on the performance metric, the study claimed 90%
accuracy.

Contrary to dynamic analysis[133], the authors of [12] used static analysis techniques for feature
extraction considering all the Application Platform Interfaces (API) that were not studied previously.
Feature selection was made manually based on the most-used features by the previous researchers.
They claimed the accuracy of 98.9% with the second biggest malware testbed dataset ever used.
As the intrusion techniques were getting sophisticated, the static analysis became invalid, and
it was therefore required to use a dynamic scheme [40]. With the static analysis techniques, the
attackers adopted deformation technologies, which could bypass the detection while dynamic
analysis methods were promising due to its resistance to code transformation techniques. The
authors of [40] proposed a new framework, called EnDroid, based on these issues. The proposed
model used “Chi-Square” for feature extraction, five different algorithms (decision tree, linear SVM,
extremely randomized trees, random forest & boosted trees) as an ensemble for base-classification,
while LR was used as meta-classifier. For the dataset, a combination of “AbdroZoo” and “Drebin”
datasets was utilized so that an accuracy of 98.2% was achieved. Wang et al. argued that most of the
existing literature on malware detection was based on static string features, such as permissions
and API usage extracted from the apps [131]. However, since malware had become sophisticated,
using a single type of static feature might result in a false-negative. In their proposed model -
DriodEnsemble, a fusion of string and structural features was utilized to detect Android malware.
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Using an ensemble of SVM, kNN, and RF, the model was evaluated against 1,386 benign apps
and 1,296 malapps. The study proved to have attained an accuracy of 98.4%, which was better
than detection accuracy (95.8%) using only string features, while the accuracy obtained with only
structural features was 90.68%.
Anomaly detection is a generic technique where any irregular traffic is flagged as a threat.

Several studies [10, 62, 87] have attempted to provide secure IDS using ML algorithms. In this
regard, an unsupervised DL technique called STL was used by Niyaz et al. [62], and it was based
on SAE and SMR. By using NSL-KDD dataset, the comparison was made using 2-class, 5-class,
and 23-class classification, and proved 2-class classification to be better than SMR. A multi-class
ML-based classification using Mutual Information (MI) was proposed by Ambusaidi et al. [10].
For the linearly dependent variable, Mutual Information Feature Selection (MIFS) with Linear
Correlation Coefficient (LLC) was used. For the non-linear dependent variable, the authors used
FMIS+MI, made changes to the already existing MIFS algorithm [102] and showed their novelty.
For the Linear model (Flexible Linear Correlation Coefficient based Feature Selection [FLCFS]), the
study modified the existing LLC [102] and proposed a new model. An MI can cope with linear as
well as non-linear dependents. However, its algorithm can cause redundancy to the classification.
Ambusaidi et al. [10] chose ’estimator’, which relied on estimating the entropies of the given data
using average densities from each datum to its k-nearest neighbors. Another reason for this study
was that the previous studies had not provided any steps as to how they chose β . The performance
was compared using three different datasets of KDDCUP99, NSL-KDD, and Kyoto 2006+, while
the metric performance indicators were Accuracy, DR, FPR, and F-measure. Maimo et al. [87]
focused on 5G application for anomaly detection based on LSTM. Features extraction was made
from network flows using weighted loss function, while feature reduction was made by using DBN
and SAE models because of similar structure (where the prediction can be computed using matrix
operations followed by the activation function) [87]. After implementing their model using CTU-13
botnet dataset, the authors claimed to have obtained a precision of up to 0.95.
Several studies using ML algorithms as a tool have claimed to reduce cyber-attacks effectively.

However, Zhou et al. [144] based their proposal Deep Feature Embedding Learning (DFEL) on
DL because traditional ML algorithms took extra time to train data. The comparison of their
proposal using the datasets of NSL-KDD and UNSW-NB15 confirmed the improvement in recall
level of Gaussian Naive Bayes classifier from 80.74% to 98.79%, apart from the running time of
SVM significantly reduced from 67.26 seconds to 6.3 seconds. In another similar study [100], the
authors claimed that the existing ML algorithms were inefficient for IoT applications and therefore
a much faster extreme-learning-machine (ELM) could be used instead [100]. Furthermore, they
found that the existing security approaches for IoT were centralized and cloud-based, and they, in
turn, inherited latency and high power consumption. The proposed IDS for IoT used fog computing
for implementation in a distributed fashion in two steps. In the first step, attack detection at fog
nodes used an online sequential extreme learning machine (OS-ELM) to identify the attacks in
the incoming traffic from the IoT virtual clusters. In the second step, these detected threats were
summarized and analyzed at a cloud server. The results of the new algorithm showed better accuracy,
FRP, and TPR after comparison with the existing NB, ANN, and standard ELM. Furthermore, the
experimental results using the Azure cloud also confirmed that the fog-computing-based attack
detection was faster than the cloud-computing based attack detection. However, the study did not
compare the results with any existing ML/DL based algorithm used for fog-computing.

4.1.2 Privacy efforts. Several privacy-preserving ML algorithms have been proposed, as shown in
Table 8. Similar to security, privacy is also compromised by a MiTM attack. In this regard, several
studies have used ML algorithms to counter different types of MiTM attacks. For example, the
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Fig. 5. An illustration of ML threat model for IoT: A ML model is prone to several attacks at either (i) input,
(ii) process, or (iii) output stages.

study by Xiao et al. [135] used game theory–a kind of reinforcement learning, which compared
the channel states of the data packets to detect spoofing attacks. The authentication process was
formulated as a zero-sum authentication game consisting of the spoofers and the receivers. The
threshold was determined by using Nash Equilibrium (NE), implemented over universal software
radio peripherals (USPRs), and the performance was then verified via field tests in typical indoor
environments.
As an improvement to their work, Xiao et al. [137] applied logistic regression to evaluate the

channel model information collected from multiple access points to detect spoofing more accurately.
A comparison was made using distributed Frank-Wolfe (dFW)-based and incremental aggregated
gradient (IAG)-based authentication to reduce overall communication overhead. IAG-based PHY-
layer authentication reduced communication overhead and increased detection accuracy. The
results showed improved FAR, DR, and computation costs by using a real-time dataset. In addition
to authentication issues, Aksu et al. [7] raised an argument concerning the wearable device, for
which the previous schemes only focused on user authentication. However, the device being used
should also be authenticated. Such devices could act as MiTMs, which might have similar user
authentication details. However, in the background, it might leak all the information to the attacker.
Wearables could only connect to the more powerful base device via Bluetooth with authentication
and encryption. Since the device name and encryption keys could be compromised easily, it was
therefore much secure to use hardware-based fingerprinting [7]. The proposed framework in
[7] utilized an inter-packet timing-based timing analysis method based on the Bluetooth classic
protocol packets. There were four steps in this framework. The first step captured Bluetooth classic
packets. The second step extracted the features. In the third step, using probability distributions,
the fingerprints were generated. Moreover, as a final step, the stored fingerprints in step three were
compared with any new incoming data from wearable devices, to identify any unknown wearable
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device. By selecting the best algorithm out of twenty from the training results, the study claimed to
achieve an accuracy of 98.5%.
Data plays a crucial role in training an ML model. For example, we can use patients’ historical

data to make a predictive decision for any new patient. However, patients are reluctant to share their
data due to obvious privacy concerns. The studies, as shown in [65, 85, 145], have worked towards
solving these issues. In [145], the researchers proposed a new framework called eDiag, which used
non-linear kernel SVM to successfully classify medical information, while preserving user data and
service provider’s model privacy. Previous studies had used HE techniques, which, according to the
study, were not appropriate for online medical prediagnosis. Using their framework, Zhu et al. [145]
claimed to have achieved a classification accuracy of 94% without compromising privacy. Similarly,
the authors in [65] classified the privacy issues as learning-privacy problem and model-privacy
problem to protect users’ sensitive information and model results, respectively.

Jia et al. [65] argued that the previous work used either gradient-values instead of real-data, or
they assumed that the learning model was private, but the learned model was publicly known, or
they used complicated encryption procedures. In comparison to all of these studies, Jia et al. [65]
proposed a uniform Oblivious Evaluation of Multivariate Polynomial (OMPE) model, which did
not contain complicated encryption procedures. Their results proved that the classification data
and learned models were protected from several privacy attacks. The research in [65] focused on
model-privacy issues. However, the learning-privacy problem was not discussed. This issue was
solved by Ma et al. [85], who argued that encrypting any user-data by the public key was a widely
used privacy-preserving technique but at the cost of key management. To preserve the data privacy,
Ma et al. [85] proposed a cloud-based DL model that worked with multiple keys to attaining privacy
of the user data called Privacy-preserving DL Multiple-keys (PDLM). In their proposed model, a
service provider (SP) sent encrypted user data to the cloud which performs training of the data
without knowing the real data. Their evaluation of the PDLM showed that PDLM had successfully
preserved privacy with lower efficiency as compared to the conventional non-private schemes.

To improve ML algorithms privacy, Sun et al. [120] proposed an improved version of fully HE that
reduced the size and noise of the multiplicative cyphertext by using the re-linearization technique.
In their scheme, private hyperplane decision-based classification, private Naive Bayes classification,
and private decision tree’s comparison were also implemented. In a similar paper, the same authors
successfully reduced the user-server iterations to half, without compromising privacy.
Social media platforms like Twitter and Facebook have enriched people’s lives at the cost of

privacy issues. Several companies used blacklisting techniques to filter benign traffic. However, a
survey showed that 90% of the people would fall prey to these attacks before they were blacklisted.
To prevent these attacks efficiently, ML algorithms were used. However, these algorithms were
inefficient in real-time due to their slower learning rate. In a study, Feng et al. [39] proposed a
multistage detection framework using DL, where an initial detection occurred at a mobile terminal
whose results were then forwarded to the cloud server for further calculation. By using CNN as
a classification algorithm, the authors claimed to achieve approximately 91% utilizing the Sino
Weibo dataset. Similarly, the lack of privacy protection mechanisms in a VANET environment was
raised by Zhang et al. [141]. In VANET, Vehicle nodes tend to learn collaboratively, raising privacy
concerns, where a malicious node can obtain sensitive data by inferring from the observed data. A
single node has limited computational and memory resources. The solution was presented by using
collaborative IDS with distributed ML algorithms and resolving the privacy issues by proposing
the concepts of dynamic differential privacy to protect the privacy of a training dataset.
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Table 8. Existing IoT privacy solutions using machine learning algorithms. Here, ToA means type of attack.

Ref. Threat ToA Use Case Algorithm Dataset Accuracy
Xiao et al. [135] MiTM Spoof detection WSN QL, DQ Private -
Xiao et al. [137] MiTM Spoof detection MiTMO Landmark Softmax Private -
Aksu et al. [7] MiTM Authentication Wearable devices best of 20 Private (Precision) 98.5%
Ma et al. [85] Data Privacy Data Leakage Cloud SGD - 95%

Zhang et al. [141] Data Privacy Inference attack VANET LR NSL-KDD -
Jia et al. [65] Data Privacy Multiple Distributed Systems OMPE realworld -

Zhu et al. [145] Data Privacy Multiple Healthcare SVM realworld 94%
Sun et al. [120] Data Privacy Multiple General HBD, NB, DT - -
Feng et al. [39] Anomaly Spam MSN CNN Sino Weibo 91.34%

4.2 Existing solutions using Blockchain Technology
Blockchain (BC) is a secure mesh network [15], that is fault-tolerant, transparent, verifiable, and
audit-able [25]. The frequently used keywords to describe BC benefits are decentralized, P2P,
transparent, trust-less, immutable. These attributes make a BC more reliable than an untrusted
central client-server model. The smart contract is a computer protocol on BC which guarantees the
execution of a planned event [23]. According to Restuccia et al. [105], the blockchain guarantees
data integrity and validity, making it a suitable solution for protection against data tampering in
IoT devices.

4.2.1 Security efforts. Several BC-based solutions for supply-chain, identity management, access
management, and IoT were proposed [74]. However, the existing solutions either do not respect the
time delay, and cannot be applied to the resource-constrained IoT devices [86]. In contrast to that
some studies, like [124] were only focused on the improvement of time response of an IoT device,
rather than their security and privacy. Machado et al. [86] offered data integrity for Cyber-Physical
Systems (CPS) by splitting their BC architecture into three levels: IoT, Fog, and Cloud. At the first
level, the IoT devices in the same domain created trust in each other using Trustful Space-Time
Protocol (TSTP), which is based on Proof-of-Trust (PoT). At the Fog level, Proof-of-Luck (PoL) was
used to create fault-tolerant IoT data which produces a cryptographic digest for a data audit. The
data generated from the first level was hashed using SHA-256 and saved temporarily. After the
acknowledgment and consensus were reached, the data was permanently stored at the third level
of cloud, which is a public ledger. Other than data integrity, the study also offered key management
using time synchronization and the location of the node. HECOPS was used to estimate the node’s
location via multi-lateration, and TSTP provided clock synchronization. The paper proposed to use
multiple consensuses, such as PoT and PoL, but it did not cater to any user privacy issue. Another
paper [82] provided data integrity with the idea of securing data collected from the drone using
public BC. DroneChain presented had four modules; drones, control system, cloud server, and a BC
network. Drones were controlled by the control system, and the data was encrypted and stored
using the cloud server on a decentralized BC. The resultant system was trusted and accountable,
offered instant data integrity, and had a resilient backend. However, the study used PoW, which
was not the best choice for a real-time IoT application like drones. In addition, the work did not
offer data provenance and user/data security.
DoS attacks are one of the frequently executing attacks due to their comparatively straightfor-

ward implementation and the ever-growing number of insecure digital devices. Due to cheap IoT
technologies, hackers can easily control multiple IoT devices to launch an attack. According to
[126], the SDN top layer is prone to brute force attacks. Since SDN is controlled by software, it
can be targeted by injecting malicious applications, and also gives rise to the DoS/DDoS attacks.
The earlier methods to prevent DDoS are not compatible with a light-weight multi-standard IoT
environment. Other than that, SDN can suffer flooding attacks, saturation attacks, and MiTM
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attacks due to lack of authentication in the plain-text TCP channel. Tselios et al. [126] argued
that BC offered a better solution to protect IoT devices from security attacks and enforced trust
between multi-vendor devices, as it was decentralized, fault-tolerant, and tamper-proof. These
valuable BC properties make it resistant to data tampering and flooding attacks. However, all of
the solutions mentioned above were theoretical ideas as no practical implementation was done.
In another paper, Sharma et al. [112] improved the security vulnerability in SDN by proposing
a distributed SDN architecture for IoT using BC called DistBlockNet. The BC was used to verify,
validate, and download the latest flow rule table for the IoT forwarding devices. The proposed
DistBlockNet model was compared with the existing solutions, and the results were better in terms
of real-time security threat detection and overhead usage.
In another study, the researchers highlighted a MiTM security gap in a smart-grid, where any

malicious actor could modify user data sent over the Internet [44]. Secondly, the customers could
not audit their costly utility bills, because the current smart-grid was unpredictable, and it did not
provide any early warnings to the customer indicating higher energy usage. To avoid the above
issues, this study proposed to use cryptographic data transmission using public and private keys
for the user ID as well as the smart contract, which was placed on a BC. This technique ensured an
immutable, secure, and transparent smart-grid system. However, PoW could be extremely expensive
and resource exhausting.

The study in [55] argued that the existing logistics systems were neither transparent nor credible
to trace. The existing systems were centralized, relied on multiple TTPs, and focused on a single
transporter. Hasan et al. [55] proposed a proof of delivery system using BC technique. In their
transporter system, the nodes were seller, buyer, courier services, arbitrator and Smart Contract
Attestation Authority (SCAA). The initial agreement was a smart contract that was placed on
Inter-Planary File System (IPFS) and was executed once all the parties agreed. The item was
transported between several transporters as per the smart contract (maximum three in this paper),
which was created every time for the next transporter. Finally, once the buyer has verified and
collected the item, the payment is released to the seller. In the case of any rejection (i.e., transaction
failure), the arbitrator takes over, settles the dispute and redistributes the amount based on the
negotiated agreement. This proposed physical-asset-delivery system has inherent BC security
against MiTM and DoS attacks. However, the authors have not paid any particular attention to
user ID management and data privacy. The study by Gupta et al. [54] was a simulation done in
OMENT++ on one application scenario where the authors claimed to have tackled Sybil attacks as
well as the replay attacks in an IoT network. First of all, they introduced a new layered architecture,
which had two more layers in the underlying IoT architecture. They explained their algorithm,
idea, and work by comparison in terms of metrics of Transactions added to the BC per second (Ftx),
Blocks added to the BC per second (Fblk), and Memory space utilized (Mmempool).
IDS is one of the widely used monitoring devices to detect anomaly traffic behavior. In a study

by Golomb et al. [49], the authors argued that the current anomaly IDS were not efficient since
the training phase considered only benign traffic. An adversary could exploit this vulnerability by
injecting malicious data, which might be regarded as benign. Secondly, the trained model might not
be as efficient, since it might be missing some IoT device traffic, which was only event-driven by, for
example, a fire alarm. Both of the issues were solved by using a Collaborative IoT Anomaly (CIoTA)
Detection using BC technique, where all IoT devices of the same type were trained simultaneously.
Since a large number of IoT devices were being trained based on their local data traffic, the chances
of an adversarial attack were minimum. Each device would generate a locally trained model which
would be collaboratively merged into a globally trained model by using BC technique. The study
successfully implemented CIoTA and proved its benefits for eliminating the adversarial attacks.
However, the separate block generated for each IoT model would increase the amount of data.
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Along with the research on frequently researched security threats such as Data integrity, MiTM,
and DoS, several studies have focused on providing solutions to multiple attacks. Sharma et al. in
[111] presented an affordable, secure, and always accessible BC technique for distributed cloud
architecture. The combination of SDN and BC implemented the security of the fog nodes. The study
brought the resource extensive tasks closer to the edge of an IoT network, which not only ensured
better security but also improved end-to-end transmission delay. The authors further claimed that
the model was adaptive based on the encountered threats and attacks, and reduced administrative
workload. The main focus of this paper was to provide an architecture based on BC-cloud in fog
computing, which was scalable, secure, resilient, and fast. The comparison was made in terms of
throughput, response time, and false alarm rate. However, there was no consideration to the data
privacy, user ID management, or the key management. Similarly, Sharma et al. in [113] claimed that
the existing Distributed Mobile Management (DMM) lacked robustness against the security threats
due to its centralized architecture. Their proposed scheme based on the BC showed improved
latency, delay, and energy consumption, without affecting the existing network layout. However,
the study used PoW consensus, which is energy-hungry and offered no user privacy.

All of the above solutions are mentioned in Table 9, where most of the researchers have focused
on using PoW as a consensus algorithm, which is not suitable for a real-time IoT application.
Moreover, most of them have not considered user anonymity and data integrity.
Table 9. Taxonomy of existing IoT security solutions using blockchain techniques. Here, U, D, and K mean
User security, Data security, and Key management, respectively.

Ref. Threat Use Case BC used BC type Consensus Security Weakness
Machado et al. [86] Data Integrity Cyber Physical System Ethereum Public PoT + PoL D/K Did not address U
Liang et al. [82] Data Integrity Drone - Public PoW D/K (i) PoW is inefficient for real-time applications

(ii) Public BC is insecure
Tselios et al. [126] DoS SDN NG Public - None U/D/K not addressed
Sharma et al. [112] DoS SDN Bitcoin Public PoW None Lack of data integrity & U
Gao et al. [44] MiTM SmartGrid - Private PoW U/D/K Encryption techniques are complex and slower
Hasan et al. [55] MiTM logistics Ethereum Private PoW K Did not address U & D. Overall less secure
Gupta et al. [54] MiTM IoT Bitcoin Public Private K Only simulation is done for basic security
Golomg et al. [49] Anomaly Network Private Public Private D/K Block per IoT model will increase the data.
Sharma et al. [111] Multiple Fog-SDN Ethereum Public Proof-of-Service None No U or D is offered
Sharma et al. [113] Multiple 5G Multiple Both Multiple None PoW is costly, plus U/D/K not addressed

4.2.2 Privacy efforts. Privacy is a complicated issue in a BC that can be accomplished, but at the
cost of throughput and speed [25]. A hacker can identify the patterns of a permissionless BC since
all of the transactions happen in public and make an informed decision about the source. BC-based
privacy-preserving was proposed by several researchers to solve this issue [5, 37, 53, 68, 78, 84, 104,
129, 143].

Wang et al. proposed a BC-based model, tackling the MiTM attack issues in a crowdsensing
application [129]. The user privacy was implemented by using node cooperation method, in which
the server released the sensing task as well as its price, which was pre-paid on the BC. The users
would perform the sensing task and upload the sensing data, and finally, the user was paid as per
their achievements. To achieve user-data privacy, the authors proposed k-anonymity, in which the
sensing task was not given to an individual, but a group and the sensed data gathered was also
in the form of a group, which preserved privacy of a single-user. The announcement VANET is
something in which the users (nodes) shared some information that might benefit other users in the
network. According to the researchers of CreditCoin [78], the current VANET system had a lack of
privacy as well as motivation for the users to share any data. CreditCoin was proposed that offered
decentralization, trust, and motivation by paying the user their incentives. The shared information
was immutable, so the source did not fake any news either, benefiting the whole VANET community
from it. For example, the information might be “a traffic accident on ABC road going towards XYZ”.
Another VANET application was proposed by Lu et al. in [84], where the authors added privacy to
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the users in the existing bitcoin platform using the lexicographic Merkle tree. Furthermore, the
forgery was controlled by adding a reputation weight to every vehicle in the network. However, the
study used PoW as their consensus protocol, which is very costly and can create traffic bottlenecks
in a resource constraint VANET application.

First, of its nature, Zhou et al. [143] claimed to design the BC-based IoT system where the servers
helped users to process encrypted data without learning from the data. HE was used to secure the
data in a private BC using PBFT consensus. The authors in [104] argued that although the BCs
were immutable and tamper-proof, once a block was executed, they did not cater confidentiality
and privacy of the data as anyone could see the plain-text. When such a BC was integrated with
IoT, it was more vulnerable due to a massive influx of data. Rahulamathavan et al. focused on
these issues by proposing a privacy-preserving BC architecture for IoT applications based on the
Attribute-based Encryption (ABE) [104].

The previous studies offered the solution by using symmetric encryption like AES, which meant
that the key must be shared with the data to enable the miners of the BC to verify the content
and update the BC. However, such a technique could not guarantee privacy. ABE used single
encryption to keep data private and safe. In a scenario of a hospital, the main server could encrypt
data before transmitting the attributes, such as DOCTOR or NURSE, which could only be read by
the concerned node by using the same attributes and decrypting them. The BC architecture could
secure data manipulation since multiple nodes verified a single transaction. After the approval, the
data was stored and could not be tampered. Lastly, there was no central control, making all of the
transactions transparent and fair. However, the cluster head could read the data, which might be
exploited by an attack.
Fan et al. working in the 5G network application argued that the work on access control of an

encrypted data still needed to be explored [37]. Despite several advantages of ABE, if a user wanted
to change his policy, the attribute revocation and re-encryption took much time. Additionally, the
owners did not control their public data, and the trust was delegated to the third parties. Centralized
systems were fault-prone, and could cause traffic choking. Fan et al. used BC to solve these issues,
by using encrypted cloud storage for the provision of privacy-preserving and data-sharing systems,
which was tamper-resistant, fully controlled by the user, and always accessible to anyone on
request [37]. However, their proposal had several drawbacks; for example, the miners could share
the information without user consent. Moreover, the BC proposed is public, which means anyone
could access it.
Aitzhan et al. [5] addressed the issues of transaction security and privacy by using multi-

signatures. Since the traditional systems were insecure, unreliable, and publicly accessible, the
messages were sent in an encrypted form that offered privacy and security in communication. User
anonymity was ensured by using the public key and private key. Similarly, another concept of
multi-signatures was mentioned by Guo et al. [53]. The authors found that the current Electronic
Health Record (EHR) system was centralized with no user privacy or control over it. Health records
are critical documents as they have a personal medical history. The user should be in control of
them, but they should be unforgeable as well. In previous studies, Attribute-Based Signatures (ABS)
enabled trust between the two parties; however, it was unreliable and restricted to a single signature.
Encashing the ABS advantages, Guo et al. presented an ABS with multiple access (MA-ABS), which
guaranteed privacy with access control to the user, and confidence of real information to the
verifier [53]. Moreover, using BC for maintenance of data reinforced immutation, unforgeability,
and decentralization. Privacy-preserving was achieved by using MA-ABS and collusion attacks
were avoided by using pseudorandom function seed. The study also proposed Key management by
using KeyGen.

ACM Comput. Surv., Vol. 53, No. 3, Article 1. Publication date: April 2020.



1:24 Nazar et al.

In a similar attempt, [68] offered a new consortium BC called PETCON, that was based on
the bitcoin platform using PoW for the PHEV to trade the surplus electricity between them. The
existing P2P was a single point of failure, and it was expensive and untrustworthy. Kang et al. [69]
improved upon the privacy of a vehicular data in the existing P2P data sharing networks. Due
to the resource constraints in a vehicular system, the data was forwarded to the edge computers
for powerful computation. The data shared was vulnerable, due to which, the researchers in this
study used consortium BC, where only the selected nodes could perform the audit and verification.
They also introduced the use of smart-contracts, which ensured user-authenticity and secure data-
sharing, and improved data-credibility. The consortium model reserved the energy as it selected
a lesser number of nodes for data maintenance. Vehicle-ID authentication was done by digital
signatures using public/private keys, while Elliptic curve digital signature algorithm provided key-
management. The authors also touched upon data privacy management by storing the raw data
using the proof-of-storage.
Table 10. Overview of existing IoT privacy solutions using blockchain techniques. Here U, D, and K mean
User security, Data security, and Key management, respectively.

Ref. Threat Use Case BC used BC type Consensus Privacy Weakness
Wang et al. [129] MiTM Crowdsensing Bitcoin Private PoW U/D Prone to collusion attacks.
Li et al. [78] MiTM Vanet Private Private Private U/D/K Poor key management
Lu et al. [84] Data Privacy VANET Bitcoin Private PoW U/D/K PoW is slow & not ideal for real-time scenario.
Zhou et al. [143] Data Privacy IoT Ehtereum Private PBFT U/D Block time not suitable for real-time IoT
Rahulamathavan et al. [104] Data Privacy IoT Bitcoin Public PoW D/K Unsuitable for real-time IoT as block time is 10 m.
Fan et al. [37] Data Privacy 5G Private Public DPos U/D/K Miners can share data & store data, BC is public.
Aitzhan et al. [5] Data Privacy Smartgrid PriWatt Public PoC U Did not address D and K
Guo et al. [53] Data Privacy Healthcare Private Public - U/D/K No BC model or consensus technique mentioned.
Kang et al. [68] Data Privacy PHEV PETCON Consortium PoW K Did not address U or D

4.3 Existing solutions using Machine Learning and Blockchain
In this Section, we look at the existing security and privacy solutions for IoT with the integration
of ML algorithms and BC techniques.

4.3.1 Security Solutions. Agrawal et al. claimed to eliminate spoofing attacks with the combination
of ML algorithms and BC techniques [3]. By securing the user-device communication, the user
in a valid IoT-zone is continuously monitored, and the communication logs are saved on the
BC. The records are immutable and can be verified for any suspicious activities. The existing
user authentication techniques include one-time-password (OTP) or security questions, which are
limited to single authentication. By using Hyperledger as a BC platform, the authors resolved this
issue by considering continuous security using IoT-zone identification, IoT-token generation, and
token validation. However, the study considered IoT-hub as a center of communication, which
voided the concept of decentralization. There was no user or data privacy in concern, and the
dataset was too small for a DL model.

The open nature of Android poses new security challenges and attacks. Gu et al. [52] illuminated
that Android-based systems were highly targeted by malware, trojans, and ransomware with
evolving nature when studied overtime [142]. The existing schemes, which can be classified as either
static-based analysis or dynamic-based analysis, had certain drawbacks such as high computation
time costs and types of code obfuscations such as variable encoding and encryption [61]. Gu et
al. proposed a new multi-feature detection model (MFM) of Android-based devices, where they
utilized a fact-base of malicious codes by using Consortium BC for Malware Detection and Evidence
Extraction (CB-MDEE) in mobile devices. Compared with the previous algorithms, CD-MDEE
achieved higher accuracy with lower processing time.
Using the Exonum BC platform and DNN ML algorithms, the proposed architecture leverage

upon BC’s properties to send and sell their data as and when required giving optimum access
control to their health data [89]. As the data in the storage would be encrypted, the compromise
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of the storage would not lead to data leakage. The proposed scheme utilizes hash functions and
public-key signatures for encrypting user data to guarantee authorization and validity. The paper,
however, lacks the in-depth comparison with other schemes, other than being just a theoretical
framework.
Table 11. Overview of existing IoT security solutions using machine learning algorithms and blockchain
techniques. Here, K stands for Key management.

Ref. Attacks Use Case Algo Dataset Metric BC used BC type Consensus Privacy
Agrawal et al. [3] MiTM IoT VMM+ LST Private Accuracy Hyperledger Private PBFT K
Gu et al. [52] Malware Android MFM Drebin FPR, DR, Acc Private Consortium - none

Mamoshina et al.[89] Access Control Healthcare DNN - - Exonum Private BFT U/D/K

Table 12. Summary of existing IoT privacy solutions using machine learning algorithms and blockchain
techniques. Here, U, D, and K mean User security, Data security, and Key management, respectively.

Ref. Attacks Use Case Algo Dataset Metric BC used BC type Consensus Privacy
Mendis et al. [91] Data Leakage General IoT CNN Private Accuracy Ethereum Private PoS D
Mendis et al. [92] Data Leakage SDN CNN MNIST Accuracy Ethereum Private PoS U/D/K
Weng et al. [134] Data Privacy General CNN MNIST Accuracy Corda Private BAP∗ U/D/K
Shen et al. [115] Data Privacy Smart Cities SVM BCWD+HDD Accuracy NG NG PoW U/D/K
Goel et al. [46] Data Tampering Computer Vision DNN MNIST/CIFAR-10 Accuracy Private Public - U/D/K

Fadaeddini et al. [36] Data Privacy Self-driving Cars - - - Stellar Public SCP† U/D/K

4.3.2 Privacy Solutions. Many companies rely on big datasets to optimize their target audience
and enhance their profits, but such data contain sensitive personal information, such as political
preferences, which can be exploited by interested entities. It is, therefore, crucial to preserve the
privacy of such users, and if required, compensate them for their contributions. Moreover, certain
domains have an abundance of data, which can be beneficial for research and development, but
the data cannot be shared with third parties. Furthermore, the same data can be manipulated and
raise doubts on its integrity. To improve upon the above architecture, several studies have been
proposed [36, 90, 92, 93, 115].

Mendis et al. [91] proposed fully autonomous individual contributors working in a decentralized
fashion without disturbing the functionality and overall efficiency, which they later on improved
in their work in [92]. Their comparison against federated learning using the MNIST dataset for
CNN model generated more than 94% accuracy in each scenario. The smart contracts incentivizing
the computing contributors executed the peer-to-peer transactions. However, in their study [92],
the execution time with encryption increased 100%. Moreover, the architecture was based on the
ethereum BC having a block-time of 12 seconds, and hence it might not feasible for a real-time IoT
application, for example, video streaming.

DeepChain proposed BC based value-driven, incentives mechanism to solve security issues [134].
DeepChain guarantees data privacy and audit-ability for the model training process. Confidentiality
is employed using the Threshold Paillier algorithm that provides an additive homomorphic property.
Using CNN algorithms and MNIST dataset, DeepChain proved that the more parties participated in
collaborative training, the higher the training accuracy was.

ML classifiers require datasets to train. These datasets are collected from different entities who
are usually reluctant to share their data due to several privacy concerns such as data leakage, data
integrity, and ownership. The users do not know how and when their data may be used. To preserve
these privacy issues, Shen et al. [115] proposed a fusion of machine learning with blockchain.
A privacy-preserving SVM based classifier was used to train the encrypted data collected from
IoT users, while the BC platform provided data sharing among multiple data providers. However,

∗Byzantine agreement protocol
†Stellar Consensus Protocol
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the solution used encryption techniques to preserve privacy, which is not suitable for a resource
constraint IoT device. The use of the BC platform is also not explained in detail.
In yet another study, an attempt to create tamper-proof DNN models is done with the help of

BC [46]. Using the BC properties like transitive hash, cryptographic encryption, and decentralized
nature, an architecture named DeepRing is proposed. A shared common ledger stored the state of
the model. Ouroboros block stored all blocks’ hashes, which was used to track the compromised
block in case of any tampering attack. Since the querent encrypted the query with its public key,
and the output was only encrypted using the public key of the querent, no one else could access the
model results. Focusing on the adversarial attacks on network parameters, the authors compared
DNN architecture with DeepRing architecture. The DNN architecture without BC using CIFAR-10,
MNIST and Tiny ImageNet datasets dropped by their accuracy by 20.71%, 47%, and 34%, respectively.
However, the DNN with BC suffered 0% accuracy loss.

Similar work is done in the latest research by Fadaeddini et al. [36], who proposed a framework
where the privacy of data-owners was preserved by training the shared model on their data locally.
After the learning is completed, the data-owners only shared the learned parameters of the model.
The study demonstrated self-driving cars application scenario, which used the Stellar BC platform
for the decentralized deep learning infrastructure. The contributors are paid for their work as they
helped in improving the accuracy of self-driving cars. The learned model is saved on a distributed
file system known as IPFS (Inter-Planary File System), which is resistant to DDoS attacks. The
framework also controls the authenticity of computing partners to avoid any malicious activities.
Although the work is novel and ticks all the privacy issues (i.e., user privacy, data privacy, and key
management), however, there is a lack of comparative analysis which can prove that their work is
better than the traditional framework.

5 RESEARCH CHALLENGES
5.1 Challenge to Machine Learning Algorithms in IoT
ML algorithms are utilized for analysis after being trained on a large number of datasets to adapt
to the desired output dynamically. These models may be used, for example, in navigating a robot
or for speech recognition, where human expertise either does not exist or cannot be used. ML
algorithms have also been utilized very efficiently to analyze threats against several cybersecurity
domains. Although ML algorithms perform well in many areas, they have some limitations in the
IoT environment:

• Scalability and Complexity: In recent studies, several ML algorithms have effectively
reduced the cyber attacks. However, ML algorithms are not an ideal pick for IoT applications
due to its limitations. Diro et al. claimed that the traditional ML algorithms were limited
in scalability, feature extraction, and accuracy [30]. Whereas, Moustafa et al. [96] argued
that ML algorithms could not solve many problems, primarily when it was implemented
in a complex resource-constrained IoT environment. Another work done by Abeshu et al.
[1] proved that the traditional ML algorithms were less scalable and less accurate in a vast
distributed network such as IoT. After comparing classical ML algorithms with DL methods,
several studies learned that most DL techniques used pre-training for feature extraction.
DL not only saved administrative time but also reduced feature dimensionality by reducing
redundancy [62, 70, 80, 108, 138].

• Latency: As a solution to the above issues, some authors, for example, Xiao et al. [137]
proposed to use ensemble ML algorithms. The ensemble algorithm proved to be performing
better than each ML algorithm individually, but it was computationally expensive. As an
alternative to classical ML, most of the studies pointed out that DL is a better choice for IoT.
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In another study, the authors proposed Deep Feature Embedding Learning (DFEL) [144]. They
utilized the DL-based model because the traditional ML algorithms increased training time in
Big Data scenarios. Using the datasets of NSL-KDD and UNSW-NB15, they claimed to have
improved in the recall of Gaussian Naive Bayes classifier from 80.74% to 98.79%. Moreover,
their method significantly reduced the running time of SVM from 67.26 seconds to 6.3 seconds.
The improvement in recall-rate and running time perfectly suit an IoT application.

• Compatibility: Although the above solutions have performed better, we believe that these
DL-based techniques are application-specific. In such cases, a model trained for solving one
problem may not be able to perform well for another problem in the similar domain [59].

• Vulnerability: One of the critical challenges to the ML/DL techniques in IoT is to secure
themselves from any security or privacy attacks. Adversarial attacks against machine learning
models may degrade system performance, as such attacks significantly reduce the output
accuracy [81]. The attack severity is proportional to the amount of information available to
an adversary about the system [22], which is very difficult to counter. As depicted in Figure
5 an adversary can attack ML models at different levels, for example, tampering the input
parameters. Goel et al. [46] highlighted that much work is done to counter input level attacks
[2, 6, 47, 50, 51], however, the research focus on adversarial attacks on network parameters is
very less. Some of these attacks can be proven deadly, for example, in a healthcare application
where an ML algorithm is used to analyze the amount of insulin provided by a patient. If
an adversary can inject malicious code and alter the ML algorithm’s input, the amount of
insulin may be increased and cause death to the patient.
Regarding the above issues, we believe that the ML algorithms for IoT need to be optimised for
scalability, speed, compatibility, and security & privacy. We think that privacy-preserving ML
algorithms, such as differential privacy and light-weight HE, should be explored to overcome
the discussed challenges.

5.2 Challenges to Blockchain in IoT
• Latency and speed: Although the BC technology was introduced a decade ago, its real
benefits were realized only recently. In recent studies, many efforts have been made to utilize
BC in several applications, such as logistics, food, smart grid, VANET, 5G, healthcare, and
crowdsensing. However, the existing solutions do not respect the latency issues of BC, and
cannot be applied to the resource-constrained IoT devices [31, 86]. The most widely used BC
consensus is PoW, as depicted in Table 10. PoW is a slow (limited to seven transactions per
second compared to an average of two thousand transactions per second for the visa credit
network) and requires a lot of energy [16, 23, 25]

• Computation, processing, and data storage: There is a substantial cost of computation,
power, and memory involved in maintaining a BC across a vast network of peers [16, 118].
According to the Song et al., in May 2018, the bitcoin ledger size had surpassed 196 GB.
These limitations suggest poor scaling and transaction speed for an IoT device. Although
an alternative was to offload their computation tasks onto a central server - cloud, or a
semi-decentralized server - fog, this, however, adds network latencies [106, 118].

• Compatibility and Standardization: Like any emerging technology, one of the BC chal-
lenges is its standardization for which the laws need to be reformed [97]. Cybersecurity is a
difficult challenge, and it would be naive to think that we all will see a security and privacy
standard that can eliminate all risks of cyber-attack against IoT devices anytime soon. Even
so, a security standard can ensure that devices meet “reasonable” standards for security and
privacy. There are a number of fundamental security and privacy capabilities that should be
included in any IoT device.
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• Vulnerability: Although the BC is non-repudiable, trustless, decentralized, and tamper-
proof, a blockchain-based system is only as secure as the system’s access point. In a public
BC-based system, anyone can access and view the data contents. While the private blockchain
is one of the solutions to the above problem, it raises other issues such as trusted third party,
centralized-control, and access-control legislation. In general, the blockchain-enabled IoT
solutions must meet the security and privacy requirements such as (i) the data must be
stored securely by satisfying the confidentiality and integrity requirements; (ii) data must be
securely transmitted; (iii) data must be shared transparently, securely and in an accountable
fashion; (iv) the properties of authenticity and non-reputation must be preserved; (v) the
selective disclosure property must be satisfied by the data-sharing platform, and (vi) the
explicit consent of data sharing must be taken by the involved parties [41].

5.3 Challenges to ML & BC in IoT
We believe that a single technology or a tool, like BC or ML, will not suffice in providing optimum
security and privacy for IoT networks. Therefore, it is a dire need of time for the research community
to explore the provision of IoT security and privacy with the merger of BC and ML, that has the
following challenges:

• Storage: As discussed in Section 4, ML algorithms perform better with larger datasets [1, 30].
However, the increase of data in BC platforms will degrade its performance [118]. It is an
open research issue to find a balance, which would be ideal for IoT applications.

• Latency challenges: Depending upon the scenario, an IoT network may generate a con-
siderable amount of data requiring more time for training and computation, which may
potentially increase the overall performance (i.e., latency) of traditional ML models [31, 86].

• Scalability: ML and BC have scalability challenges, in terms of both the processing and
communication costs. Many ML algorithms impose additional processing and communication
costs with the increase of data that is imminent for most IoT networks. Similarly, the BC
performs poorly as the number of users and networking nodes increases [29, 110]. On average,
an Ethereum BC performs 12 transactions per second, which is unacceptable in traditional
IoT applications, where millions of transactions are happening every second [109].

• Vulnerability: Although the combination of ML and BC can tremendously increase security
and privacy, there are a few challenges as well. The increasing number of threats, including
malware and malicious code, increases the challenge of identifying, detecting, and preventing
them in real-time IoT networks. The training phase of ML takes longer, and while it is possible
to detect malicious traffic, this is only possible with a trained model [81]. Blockchain, on the
other side, can guarantee data immutability and can identify their transformations. However,
the issue is with the data that is corrupted before entering the blockchain. Additionally, the
malfunctioning of sensors and actuators from the start cannot be detected until that particular
device has been tested [106]. Besides the above issues, public BC is prone to privacy evasion
techniques as the stored data is publicly accessible and available to all readers. Using private
BC is one of the solutions to these challenges; however, this would limit access to a large
amount of data required for ML to perform efficiently [109].

The IoT devices can generate a massive amount of data, which should be typically processed
in real-time. Since the demand for IoT-based BC is different, there is much research going on to
bring a new BC that is compatible with IoT. However, the most important limitations on BC are
ledger storage and transaction per second (TPS). Although in the latest BCs, such as Hyperledger
Fabric, TPS is down to milliseconds, a lot still needs to be done for a BC to work smoothly in the
IoT environment. Similarly, in the context of the secure BC model of IoT, the security needs to be
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built-in, with validity checks, authentication, and data verification, and all the data needs to be
privacy-preserved at all levels. We need a secure, safe, and privacy-preserved IoT framework.

6 CONCLUSION AND FUTUREWORK
In this paper, we have reviewed the latest threats to IoT and categorized them into security and
privacy. Their effects, type of attacks, the layer of impact, and solutions have been briefly mentioned.
We have then comprehensively presented the latest existing literature survey on IoT security and
privacy using ML algorithms as well as BC technologies and highlighted their gaps. This paper
has presented the current solutions to IoT security and privacy by utilizing ML algorithms, BC
techniques, and the integration of both. To better understand the security and privacy issues in an
ML, we have also attempted to present an ML threat model for IoT based on the previous studies.
Finally, We discuss a few research challenges to ML algorithms in IoT, BC techniques in IoT , and
the challenges to the combination of ML and BC in IoT.

The generation, storage, analysis, and communication of data are fundamental to the IoT ecosys-
tem. A holistic approach is in demand, where a vulnerability-free system needs to be built, through
measures such as adherence to best practices and continual testing. The system should be able
to learn and adapt to the latest trends in threats (zero-day attacks) since malicious activities are
dynamic. In this regard, ML/DL can be extremely beneficial in analyzing the traffic. At the same
time, the BC can serve as a basis to keep a ledger of logs and communication in an IoT environment.
Since this data is immutable, it can be used confidently in the court of law as a piece of evidence.
Among the studies conducted on IoT security and privacy, most of them focused on providing

security or privacy. We believe that for a system to be secure, both security and privacy are
equally important. Moreover, data privacy is the most critical factor, which can only be valid when
considered end-to-end. The current systems lack the integrity of datasets that are used to train a
model. Any adversary can tamper these datasets to obtain their desired results.
Currently, the integration of ML algorithms with BC techniques to achieve IoT security and

privacy is a relatively new area, which requires further exploration. However, some of the research
questions are: (i) Can we use BC to eliminate DDoS attacks in an IoT network by integrating it
with ML algorithms? (ii) Can the resource-constrained IoT device leverage upon BC’s inherited
encryption to perform in real-time? (iii) Can BC introduce trust in traditional collaborative ML-
based IoT Intrusion Detection Systems? Moreover, several organizations, both public and private,
rely on the data generated by IoT devices. How can we trust the data, whether in motion, or at rest?
This question becomes more difficult to answer in a centralized cloud-based IoT architecture. We
can extract meaningful data from privacy-preserving ML algorithms, whereas BC can offer security
and trust. In the future, we aim to design and develop a privacy-preserving IoT framework, which
will offer privacy-preserving data sharing and privacy-preserving data analysis.
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