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Abstract. Adversarial examples add imperceptible alterations to inputs
with the objective to induce misclassification in machine learning models.
They have been demonstrated to pose significant challenges in domains
like image classification, with results showing that an adversarially per-
turbed image to evade detection against one classifier is most likely trans-
ferable to other classifiers. Adversarial examples have also been studied
in malware analysis. Unlike images, program binaries cannot be arbi-
trarily perturbed without rendering them non-functional. Due to the
difficulty of crafting adversarial program binaries, there is no consensus
on the transferability of adversarially perturbed programs to different
detectors. In this work, we explore the robustness of malware detectors
against adversarially perturbed malware. We investigate the transferabil-
ity of adversarial attacks developed against one detector, against other
machine learning-based malware detectors with different feature space,
and code similarity techniques, specifically, locality sensitive hashing-
based detectors. Our analysis reveals that adversarial program binaries
crafted for one detector are generally less effective against others. We
also evaluate an ensemble of detectors and show that they can poten-
tially mitigate the impact of adversarial program binaries. Finally, we
demonstrate that substantial program changes made to evade detection
may result in the transformation technique being identified, implying
that the adversary must make minimal changes to the program binary.

1 Introduction

Adversarial examples are inputs with slight, imperceptible modifications that
induce misclassification in machine learning models. The efficacy of this attack
has been well documented in the domain of image classification where perturbed
images that are otherwise human-recognizable are misclassified by victim ma-
chine learning models [1,2]. A series of recent works have also highlighted this
vulnerability in machine learning-based malware detection [3,4,5,6,7]. A key dif-
ference between the two domains is that while slight changes to an image, e.g.,
by injecting white noise, still deems it recognizable (by a human), arbitrary
changes to a program can render it dysfunctional. One major consequence of
this difference in the study of adversarial examples is that while in the domain
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of images, adversarial example attacks are largely transferable [5], meaning ad-
versarial examples crafted for a target machine learning model can be used to
fool a different machine learning model; Some success in transferring malware
has been demonstrated [7], however, this is conditional on similarities between
the model’s feature space. However, when the model’s feature space varies, this
is largely false in the malware detection domain [6].

This lack of transferability has profound implications for adversarial example
attacks in malware. For instance, real-world systems rarely rely on a single mal-
ware detector. Consider, for instance, the VirusTotal service.1 Given a program
binary or its cryptographic hash, it returns a detailed report on the malicious
nature of the program. Included in this report are its cryptographic hash (e.g.,
SHA-256), locality sensitive hash (LSH) digests (e.g., ssdeep [8]), as well as de-
tection results from various security vendors (scanners) some of whom employ
machine learning-based detectors [9]. Thus, a malware program adversarially
perturbed to evade a particular target machine learning model will not evade
detection against an ensemble of detectors. To understand why an adversarial
example attack on a machine learning model may not be transferable to a ma-
chine learning-based or non-machine learning-based detector consider an LSH
algorithm for malware detection. Roughly, such an algorithm divides its input
into blocks, computes the hash of each block and concatenates the results to
create the final digest. Thus, if a certain block is unchanged, the hash of that
block will remain the same. One of the techniques to create adversarial examples
is to append code to the end of the program [10]. Since this is only added to the
end of the program, the LSH-based detection scheme will show the same digest
for the blocks of the program before the appended part, and hence the program
will still be detected as malware.

A naive way to solve this issue, from the attacker’s perspective, would be
to completely obfuscate the program, using packers for example. However, the
presence of obfuscation may itself result in the program being flagged as potential
malware [11, §5]. Indeed, packing with popular packers increases the likelihood
of being detected [9, §4.4]. Also, obfuscation may also induce large changes. Too
many changes are not ideal as they would create new signatures that could be
used to identify the technique used to perturb a program [12, §4]. Therefore, in
the spirit of adversarial examples in the image domain, it may make sense to
only consider the attack potent if the amount of changes made to the code is
minimal.

In this paper, we empirically investigate these assertions. More concretely,
our contributions are as follows:

– We empirically demonstrate that an adversarial example attack targeted on
one detector is not in general transferable to another when the feature space
is different. To demonstrate this, we take a recently proposed framework
called malware makeover [9] and use it to transform program binaries to
evade detection against a deep neural network (DNN) based model trained

1 See https://www.virustotal.com/

https://www.virustotal.com/
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on raw bytes (MalConv [13]), as is done in [9]. We then test these trans-
formed binaries against the original model, i.e., MalConv, an ssdeep de-
tector (a commonly used LSH algorithm), and a random forest (RF) based
detector trained on the EMBER dataset [14] with features (known as EM-
BER feature) via LIEF [15], a set of features automatically extracted from
program binaries. Our results show that the Malconv targeted transformed
binaries are poor in evading detection against the other detectors. This is
rather surprising, since as we show in Section 2.3, evading ssdeep detection
is not difficult. We repeat the same procedure by taking these other detec-
tors as the target for transforming programs and show that results stay the
same.

– We then investigate whether an ensemble of detectors is capable of mitigating
the impact of adversarially transformed binaries, as the above conclusion
may imply, using different decision rules: minority, majority, and consensus.
We include all three detectors in the ensemble and report the impact on the
true/false positive rates of the original binaries, and the impact on these rates
if the binaries are transformed taking one of these detectors as the target
detector to create adversarial samples. Our results indicate that a majority
voting strategy is capable of substantially mitigating this adversarial attack
since its success rate is significantly lower on non-target detectors. We show
that this conclusion is also backed by results from the VirusTotal service.

– We demonstrate that substantial program changes create a new signature.
This has been raised as a possible issue with transformation techniques that
change the program too much [12, §4]. We confirm this by training a model
to distinguish between original and modified binaries using the malware
makeover technique [9]. This implies that an adversary aiming to evade an
ensemble of detectors would need to make significant changes, leading to
detection as heavily obfuscated.

2 Preliminaries

2.1 Definitions

We assume that we have a set D = B∪M of benign B and malware M programs
and their labels. Each program x ∈ D has the label 0 if x ∈ B, else it has the
label 1. The two subsets B and M of D are disjoint.

True and False Positives. Given a malware detector A, we define its type-I
(false positive) and type-II (false negative) error rates as:

FPRA =
|A(x) = 1 : x ∈ B|

|B|
, FNRA =

|A(x) = 0 : x ∈M |
|M |

Upon applying an evasive technique E on the programs in D, we define the same
types of errors as:

FPRE
A =

|A(x′) = 1 : x′ ← E(x), x ∈ B|
|B|

,FNRE
A =

|A(x′) = 0 : x′ ← E(x), x ∈M |
|M |
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The changes in FPR and FNR measure the evasiveness of the technique. Instead
of FNR, we shall report the true positive rate (TPR), i.e., TPR = 1− FNR.

Program Similarity.We take the definition of binary code similarity from [16].
That is, two binaries are similar if compiled from two similar source codes. We
are also interested in the similarity of the original program x and its evasive
counterpart x′ ← E(x). This similarity is captured by a distance metric µ0. We
shall use the normalized Levenstein distance (NLD) as this metric [17].

Machine Learning vs Hash-based Detection. For machine learning-
based detection, we assume a binary classifier f , which takes a program binary
x as input and outputs 1 or 0, indicating malware or benign, respectively. In con-
trast, for hash-based detection, we assume a signature-based scheme. One such
family of hash functions is locality-sensitive hashing (LSH). The hash-based de-
tection scheme is endowed with the triplet (H,µ, θ), respectively, a hash function,
a metric on the hashes, and a threshold. The metric µ on the hashes takes as
input two hashes h′ = H(x′) and h′′ = H(x′′) and outputs µ(h′, h′′). Given a
hash h and a set of signatures S, we define distµ(h, S) = minh′∈S µ(h, h′). The
hash-based scheme works as follows:

1. During training, for each x ∈ D, i.e., all programs in the dataset, H(x) is
calculated and stored it in the database S. These are called signatures.

2. Given a program x (unknown if malware/benign), it calculates its hashH(x).
3. Compute d = distµ(h, S). If d ≤ θ, output 1(malware), else output 0(benign).

In the one extreme, h could be a cryptographic hash function, in which case we
can set θ = 0, and the program outputs 1 if the hash is identical to some signature
in the database. Note that the distance function in the hash domain may not
be the same metric used to calculate the similarity of the original programs.
Depending on the situation, multiple programs may pass the test of Step 3. In
this case, we only consider the detector as successful if the only program passing
test of Step 3 when given h = H(E(x)) is x, i.e., the original program.

Threat Model. The adversary aims to modify a program so it is misclas-
sified by the target detector while retaining functionality. As discussed in the
introduction, the transformed program must remain similar to the original in
terms of edit distance, measured by the NLD metric µ0 above. Given this, the
goal of the adversary is as follows: Given the set D = B ∪M of benign and
malware programs, a detector A with false positive and true positive rates of
FPRA and TPRA, respectively, a distance metric µ0 and a distance threshold
θ0, construct an evasive technique E such that (1) For all x ∈ D, µ0(x, x

′) ≤ θ0,
where x′ ← E(x). (2) FPRE

A > FPRA and TPRE
A < TPRA.

2.2 Malware Makeover and Extension

We first describe the algorithm behind the malware makeover attack from [9].
White-Box Attack. The white-box malware makeover attack targets a ma-

chine learning detector that uses gradient descent for minimizing its loss, e.g., a
neural network. The white-box attack transforms a binary b to produce a new
binary b′ by introducing changes that increase the loss of the detector. These
changes are guided by the gradient of the input features, aiming to misclassify
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the binary b′. The algorithm stops when the loss becomes high enough for the
detector to misclassify the binary b′.

Black-Box Attack. The black-box attacks involve manipulating the input bi-
nary b to decrease the probability of the correct label without computing the
gradient. By rearranging the loss function, the attacker aims to produce a new
binary b′ by finding perturbations that lead to a decrease in the probability
of the correct label, ultimately causing misclassification. Further details on the
white-box and black-box attacks from [9] are given in Appendix A.

Transformations: Malware Makeover utilizes two transformation families
initially designed to secure program binaries and prevent code-reuse attacks.
The first introduces in-place randomization (IPR) [18], preserving binary func-
tionality while obscuring its structure from attackers. Lucas et al. [9] enhanced
the IPR approach to generate a wider range of functionally equivalent binaries
by allowing iterative transformations, conservatively applying changes, and ex-
panding supported instructions and conventions. A simple example of an IPR
transformation (substituting equivalent instruction) is [9]: add ebx 0x10 -->

sub ebx, -0x10.
The second family of transformations, derived from Displacement (Disp) [19],

relocates code segments to a new section, replacing them with a jump instruc-
tion and updating relative addresses to preserve functionality. Lucas et al. [9]
extended Disp by allowing the displacement of any consecutive instructions and
replacing them with semantic no-operations (nops) that do not affect memory
or registers [20]. To keep the binary size within limits (e.g., 1% over the origi-
nal), displacement is constrained by a byte budget. The number of functions is
divided by this budget, moving that many bytes per function. We build on the
transformation framework and codebase from Malware Makeover [21], including
its private version–acquired direct correspondence with the authors of [9]. Our
extensions to this codebase are detailed in Section 3.3.

Excluding Headers: We exclude the header in the training and classifi-
cation of binaries for our malware detection model, inspired by the malware
makeover approach [9], which also removes headers. This is due to the finding
in [22] that deep neural networks (DNNs) often rely on header characteristics for
classification, rather than on meaningful features from the data and text sections
where malware typically resides. This allows adversaries to evade detection with
minimal header modifications, highlighting the need for a model that focuses on
substantive program features.

2.3 Locality Sensitive Hashing and Adversarial Example Attack
Locality sensitive hash (LSH) functions like ssdeep operate differently from
cryptographic hashes by applying a hash on disjoint input chunks, maintaining
similar digests unless many chunks change. Given a string s, the ssdeep algo-
rithm uses a rolling window of a specified length (in terms of bytes). At each
byte sequence covered by the rolling window, it computes a rolling hash. If the
rolling hash of the current byte sequence (determined by the window) is equal
to −1 (mod b), it triggers the algorithm to compute the cryptographic hash of
the current chunk, i.e., all byte sequences until now. The 6 least significant bits
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of this hash are retained. These bits are converted into a Base64 representation,
resulting in the Base64 hash character of the ssdeep hash of the current chunk.
The window then moves to the next byte sequence until the next “trigger point”
is reached, and the next Base64 hash character is appended to the previous hash
character. A total of 64 chunks are used in the default setting. The modulus b is
referred to as the block size and satisfies the approximate relation: b ≈ n

S , where
n is the file size in bytes, and S = 64 denotes the number of chunks [23,24]. If
the number of chunks is fewer than S/2 − 1 = 31, the algorithm sets the block
size to b/2, and the process is repeated. Below is an example of the ssdeep hash
of a string of length 500:

12:+xK3x+44q49oMeCsavrOyp9YQRHqHsaQCvuvhn+QyVyjfA5:j3X4q4DeCsaviypeQRH4LQFcQyj

The last substring starting from the ‘:’ is the ssdeep hash with the block
size 12 × 2 = 24. Since the number of Base64 characters is less than 31, the
algorithm sets the block size to 12 (the integer at the start of the hash) and
computes the hash shown between the two :’s. In Appendix B, we examine an
attack on ssdeep documented in [24], where the input is natural language text
and involves altering one byte in each chunk.

2.4 EMBER Features
For one of our detectors, we use the EMBER feature set, which is a set of
engineered features extracted from software binaries commonly found in bench-
mark evaluation datasets first introduced by EMBER [14] and reinforced by
SOREL [25], containing 900K and 20M software binaries respectively. The EM-
BER features are structured into nine distinct feature categories, encapsulating
both parsed heuristics and format-agnostic statistical measures. To ensure that
the features are not extracted from the header of the binary file (see Section 2.2),
we only extract features from the data and text sections. Thus, we only retain
ByteHistogram, ByteEntropy, StringExtractor, and SectionInfo features, exclud-
ing GeneralFileInfo, HeaderFileInfo, ImportsInfo, ExportsInfo, and DataDirec-
tories. Interested readers are referred to [14] for a detailed description of each
extracted feature.

3 Experimental Setup
In this section, we describe the evaluation datasets, followed by a description of
the detectors used in our experiments. We visualize our experimental setup with
regard to dataset preparation, choice of malware detectors, and the creation of
transformed binaries in Figure 1.

3.1 Evaluation Dataset

Our evaluation is based on a sample from the SOREL-20M dataset [25], a dataset
of 20M Windows PE files. This dataset contains hashes of both benign and ma-
licious files, along with their EMBER (LIEF) feature vectors [14]. Each sample
is accompanied by metadata, and malicious behavior labels based on details
supplied by detection vendors at the point of collection. The is the set of sam-
ples on which transformations are to be applied to the original binaries. In our
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Fig. 1: Pipeline for functionality preserving transformation of binaries using Mal-
ware Makeover.

evaluation, we randomly chose 3,362 malware binaries for the test set from the
SOREL-20M repository of malware samples. For copyright reasons, SOREL does
not distribute benign binaries. As we discuss next, we need to obtain the raw
binary to be able to perform transformations. For this reason, the benign hashes
obtained from SOREL were queried through the VirusTotal service, and if the
sample existed, it was downloaded for evaluation. This resulted in 1,564 test
benign binaries.

3.2 Malware Detectors

MalConv. The MalConv detector from [13] is our canonical detection model.
This is a neural network architecture designed for malware detection using raw
byte sequences of executable files. It is based on a convolutional neural net-
work (CNN) architecture that processes raw byte sequences of executable files
and consists of layers including raw byte embedding, 1D convolutions, temporal
max-pooling, fully connected layers, and a softmax output layer. The model is
designed to consider both local and global contexts while examining an entire
file, allowing it to capture important features for malware detection. The model
is trained on a dataset of 400,000 executable files split evenly between benign
and malicious classes.

EMBER-feature based RF (EMBER-RF). We implemented a Random
Forest model utilizing the default parameters and trained on the EMBER fea-
ture set. The training set for this model consists of 200K balanced malware and
Benign samples, subsampled from the SOREL dataset [25]. These training sam-
ples are disjoint from the aforementioned evaluation set (c.f. Section 3.1). The
resulting EMBER-RF model achieved an accuracy of 97.09% when trained and
tested on 90% and 10% of the dataset respectively.

ssdeep. This is an LSH used widely for signature-based malware detection.
An overview of how the algorithm works is shown in Section 2.3. We take the
ssdeep hash of malicious and benign binaries in the test dataset to serve as the
local database of the detector, against which any new (transformed) binaries are
checked for malicious or benign behavior. We use the Python implementation [8]
of ssdeep, which provides a similarity value we shall use to compute a function
that gives a similarity score between 0 and 100. This is used as the metric µ
defined in Section 2.1.
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Ensemble. We also consider an ensemble detector taking all three detectors into
account. The parameter 1 ≤ m ≤ 3 determines the decision rule. All decisions
are made on the positive label, i.e., malware. The minority rule, m = 1, means
that the program is labeled as malware if at least one detector classifies it as
such. Otherwise, it is classified as benign. The majority rule, m = 2, requires
at least two detectors classifying the program as malware. The consensus rule,
m = 3, requires unanimous classification of malware. The choice of m has an
obvious impact on the TPR and FPR rates, as we shall experimentally evaluate.

3.3 Creating Transformed Binaries

The transformations from malware makeover require the list of functions con-
tained in a program binary. Given a program binary, we therefore (a) disassemble
it through IDA [26] to obtain its control flow graph (CFG), and (b) from the
CFG, extract functions for the malware makeover algorithm. Once the functions
have been extracted we can run the malware makeover algorithm with a target
detector. Figure 1 depicts our pipeline for creating adversarial binaries.

For each malware detector, discussed in Section 3.2, we formulated a targeted
adversarial attack to alter the classification of all binary samples within the eval-
uation dataset, as depicted in Figure 1. A white-box attack strategy was applied
to MalConv, leveraging its vulnerability to techniques effective against models
based on gradient descent, as discussed in Section 2.2. This is the default attack
as used by the authors of malware makeover [9]. In contrast, black-box attacks
were employed against EMBER-RF and ssdeep, utilizing differing transforma-
tion techniques based on their susceptibility.

For the malware makeover attack on EMBER-RF, we imported the EMBER-
RF model into the malware makeover program and executed it. However, to
assess whether the modification to the binary is successful, we need to extract
EMBER features after each alteration to a binary and evaluate them using the
EMBER-RF model. We incorporated the EMBER feature extraction script from
[27,14] into the malware makeover framework to automate this. However, the
integration of the EMBER feature extraction script raised several incompatibility
issues, since the EMBER repository’s code is in Python 3 and the malware
makeover is based on Python 2.7. To address this incompatibility, we initially
created a socket to send over the modified binary to the EMBER feature script
and get a feature vector. However, this process introduced greater latency. We
therefore decided to convert the EMBER feature extraction code to Python 2.7
to ensure compatibility with the malware makeover architecture and make the
transformation process faster.

We also modified the malware makeover’s codebase to integrate ssdeep, i.e.,
computing ssdeep hashes and computing the similarity between the hashes
of the original and modified binaries after each alteration until a threshold is
reached. Instead of using a modified attack on ssdeep as outlined in Section 2.3,
we used malware makeover’s black box algorithm (with the similarity difference
used as a proxy for confidence value difference), so that all three attacks can be
evaluated under the same framework.
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Table 1: Performance of malware detectors on the original binaries.

Performance Metrics

Detector Acc TPR FPR

MalConv 84.34% 80.11% 8.18%

EMBER-RF 81.17% 77.07% 11.57%

SSDeep 100.00% 100.00% 0.00%

4 Transferability of Adversarial Examples

4.1 Performance of Detectors on Original Dataset.

Table 1 shows the performance of the three detectors on the original binaries in
our test dataset (evaluation dataset from Section 3.1). Alongside the TPR and
FPR, we show the accuracy (Acc), which will be used throughout this paper.
The performance of all three detectors is very good, with ssdeep showing a 100%
TPR indicating that all binaries were significantly different from one another to
cause this hash-based detector to raise any false positives.

Table 1 contains only 4,329 out of the 4,926 binaries in our test dataset. This
is because while running malware makeover with the MalConv detector as the
target detector, we could only run 4,329 out of the 4,926 binaries, due to the hard
binary size restriction of 2MB in malware makeover, and IDA failing to extract
CFGs. Likewise, for various other reasons, malware makeover also caused errors
on several program binaries with the other two detectors as the target.

Table 2 shows the percentage of malware and benign binaries that were suc-
cessfully processed by malware makeover given a particular malware detector.
We consider a binary as successfully processed if it either evades the target model
or malware makeover runs out of transformations to try within a time limit of 3
hours or a maximum number of iterations of 20. The binaries that were not suc-
cessfully processed are discarded from the pool of binaries for evaluation for that
target model. They may or may not have successfully evaded the target model
had we given malware makeover more time or more iterations. For EMBER-RF
and ssdeep, the percentage of successfully processed binaries is even lower.

The table also shows the transformation types that were successful in evading
a target model. Specifically, Disp transformation was applied to both MalConv
and EMBER-RF, while the IPR transformation was chosen for its efficacy in
circumventing ssdeep. Our findings revealed that the Disp transformation, while
effective against MalConv and EMBER-RF, did not compromise the integrity of
ssdeep, highlighting the unique resilience of each detection system to different
adversarial manipulations. This is most likely due to the lack of functions on
which Disp transformation can be applied even while using higher budgets.

4.2 Transferability of MalConv Adversarial Examples

We first use MalConv as the target detector and use malware makeover’s white-
box attack to create adversarial samples of the original binaries. Table 3 (Mal-
Conv TTB) shows the resulting performance of the MalConv transformed bina-
ries on all three malware detectors. Not surprisingly, the attack is successful on
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Table 2: Percentage of binaries successfully processed by malware makeover and
attack parameters used across malware detectors.

Attack Parameters Processed # (%)

Target Type Transformation # of Iterations Budget Malware Benign

Total - - - - 3362 (100%) 1564 (100%)

MalConv whitebox Disp 20 0.05 2765 (82.24%) 1564 (100%)

EMBER-RF blackbox Disp 20 0.05 1148 (34.15%) 212 (13.56%)

SSDeep blackbox IPR 20 - 1889 (56.19%) 644 (41.18%)

Table 3: Performance evaluation of malware detectors at targeted transform
binaries (TTB) for MalConv, EMBER-RF, and SSDEEP.

Detector
MalConv TTB EMBER-RF TTB SSDEEP TTB

Acc TPR FPR Acc TPR FPR Acc TPR FPR

Original Binaries

MalConv 84.34% 80.11% 8.18% 84.41% 84.32% 15.09% 84.64% 80.68% 3.73%
EMBER-RF 81.17% 77.07% 11.57% 59.12% 60.10% 46.23% 86.06% 84.75% 10.09%

SSDeep 100.00% 100.00% 0.00% 100.00% 100.00% 0.00% 100.00% 100.00% 0.00%

Transformed Binaries

MalConv 31.00% 38.23% 81.78% 84.41% 84.32% 15.09% 85.08% 81.00% 2.95%
EMBER-RF 77.85% 73.82% 15.03% 40.00% 46.34% 94.34% 76.94% 74.80% 16.77%

SSDeep 94.48% 97.07% 10.10% 95.00% 95.82% 9.43% 13.26% 16.52% 96.27%

MalConv with a significant decrease in TPR, dropping from 80% to 38%, along-
side a significant increase in FPR, from 8.18% to 81.78%. However, the same
transformed binaries have relatively little impact on the other two detectors.
Note that according to our definition of evading detection 2.1, this shows that
the binaries do evade detection against the other two detectors as well since the
FPR has increased together with a decreased TPR. However, relatively speak-
ing the decrease is less prominent. This solidifies our viewpoint that if the target
system employs a variety of detectors, adversarial binaries constructed for only
one such detector are likely to still be detected by others, and hence these trans-
formed binaries are not highly transferable.

For ssdeep we need to determine a similarity (distance) threshold beyond
which the hash of a binary is considered not to be similar to a hash in the
database. Figure 2 shows the rate of successfully detecting a transformed binary
in the database through their ssdeep hashes across different similarity thresh-
olds. The rate is relatively unchanged for any threshold less than 0.4. We chose
a threshold of 0.25 for ssdeep, which is used for the remainder of this paper.

4.3 Transferability of EMBER-RF Adversarial Examples

To test that the non-transferability of the adversarial attack is not just the result
of a particular detector, i.e., MalConv, we repeated the above experiment but
this time using EMBER-RF as the target model. We use the black-box version
of the malware makeover algorithm since there are no gradients involved in
this classifier. Note that the features are now completely changed: raw bytes
in MalConv versus EMBER features in EMBER-RF. From Table 2, we have
a reduced set of 1148 malware and 212 binaries for EMBER-RF as the target
model, since the rest of the binaries were not successfully processed by malware
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Fig. 2: ssdeep analysis of original binaries compared with Malconv targeted
transformed binaries.

makeover. We therefore recompute the TPR and FPR of all three detectors on
the original binaries from this reduced set shown in Table 3 (EMBER-RF TTB).
For this reduced set EMBER-RF has a fairly high FPR (46.23%). However, this
is further increased and TPR further decreased in the transformed binaries. Thus
the changes do successfully evade detection. Once again, these modifications did
not significantly affect the performance of the other detectors; in particular,
Malconv’s metrics did not change. Thus, these results show that adversarial
examples that are specially designed to evade EMBER-RF model are not entirely
transferable to the other detection methods in our study.

4.4 Transferability of ssdeep Adversarial Examples
Following the evaluation of malware detectors on MalConv and Ember-RF ad-
versarial examples, we first establish baseline performance by only selecting those
original samples that were successfully processed by the malware makeover al-
gorithm for ssdeep: 1889 malware and 644 benign, from Table 2. Table 3 (SS-
DEEP TTB) presents the performance of the three malware detectors against
ssdeep targeted transformed binaries. There is a sharp rise in FPR from 0% to
96.27% and a substantial drop in TPR from 100% to 16.52% for ssdeep. Once
again, the impact on EMBER-RF is minimal, while MalConv’s metrics showed
improvement. These results indicate that adversarial examples crafted to cir-
cumvent ssdeep detection capabilities fail to affect the efficacy of other malware
detectors significantly.

5 Performance of the Ensemble Detector

Our results from the previous section indicate that a possible mitigation tech-
nique against adversarially transformed binaries is to use an ensemble of de-
tectors. In this section we this ensemble approach, incorporating all three de-
tectors—MalConv, EMBER-RF, and ssdeep—to determine the efficacy of an
ensemble in detecting transformed binaries. This analysis involves selecting a
subset of adversarial examples that have been successfully processed by the mal-
ware makeover algorithm for all three detectors. For the purpose of establishing
baseline performance, a corresponding subset of original binaries is also compiled.
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Table 4: Performance evaluation of individual malware detectors on the common
test set. TTB stands for targeted transformed binaries.

Detector
Original Binaries MalConv TTB EMBER-RF TTB SSDeep TTB
Acc TPR FPR Acc TPR FPR Acc TPR FPR Acc TPR FPR

MalConv 78.64% 75.74% 3.96% 37.91% 39.77% 73.27% 89.39% 89.27% 9.90% 78.93% 76.24% 4.95%
EMBER-RF 71.43% 72.77% 36.63% 56.15% 61.88% 78.22% 53.04% 61.06% 95.05% 65.49% 66.34% 39.60%

SSDeep 100.00% 100.00% 0.00% 95.62% 97.19% 13.86% 95.90% 97.52% 13.86% 8.91% 10.40% 100.00%

Table 5: Performance evaluation of Minority Rule, Majority Rule, and Consensus
Rule ensembles on original and transformed binaries. TTB stands for targeted
transformed binaries.

Binaries
Minority Rule Majority Rule Consensus Rule

Acc TPR FPR Acc TPR FPR Acc TPR FPR

Original 94.34% 100.00% 39.60% 95.05% 94.39% 0.99% 60.68% 54.13% 0.00%

MalConv TTB 85.29% 98.68% 95.05% 70.72% 76.40% 63.37% 33.66% 23.76% 6.93%

EMBER-RF TTB 86.14% 99.83% 96.04% 92.50% 94.72% 20.79% 59.69% 53.30% 1.98%

SSDeep TTB 92.93% 99.50% 46.53% 54.74% 54.29% 42.57% 55.45% 48.18% 0.99%

The performance of each detector, providing individual verdicts/classification on
this common subset of original and transformed binaries, is presented in Table 4.
A key thing to note here is that unfortunately, the performance of EMBER-RF
on the original binaries in this common subset is lower than its performance on
the complete list of original binaries (see Table 1). This discrepancy has been
factored in our conclusions in the following.

Minority Rule. We start with the minority rule (m = 1) as defined in Sec-
tion 3.2. Table 5 shows the performance evaluation of the minority rule ensemble
on both original and transformed common subsets. The ensemble resulted in a
perfect TPR of 100% on original binaries, indicating that all malicious binaries
were correctly identified. However, the 39.60% FPR suggests that a significant
portion of benign binaries were incorrectly classified as malicious. This is mainly
due to EMBER-RF’s poor FPR on the original binaries. On the transformed
binaries, while the TPR remains high (>98%) for all adversarial sets, there is
a sharp increase in FPR to 95.05% and 96.04% in the case of MalConv and
EMBER-RF adversarial set showing that the ensemble incorrectly classifies a
large number of benign binaries as malicious. The minority rule however per-
forms comparatively better on the ssdeep adversarial set, with a high TPR of
99.50% and a slight increase in FPR to 46.53% when compared to the original
set, indicating a better balance between identifying malicious and benign bina-
ries compared to the other transformed sets. The high FPR of the minority rule
ensemble is not surprising, as only a single detector can influence the decision
on a program being malware, which includes the target model as well.

Majority Rule. From Table 5, it can be seen that the majority rule ensemble
achieves a high TPR of 94.39% with an extremely low FPR of 0.99%, indicating
excellent detection of actual malicious binaries and rarely misclassifying benign
files as malicious. However, there’s a noticeable decline in TPR to 76.40% and a
considerable rise in FPR to 63.37%, suggesting that the ensemble is less effective
at detecting both malicious and benign binaries when dealing with MalConv-
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evasive binaries. This again is mostly due to EMBER-RF’s poor performance on
these transformed binaries (see Table 4). This explains why the ensemble achieves
a high TPR (>92%) and a reasonably low FPR (<21%) when EMBER-RF is
the target model, as the majority now includes the other two detectors, MalConv
and ssdeep which show good TPR and FPR. The performance of the majority
rule is also low when ssdeep is the target, once again owing mostly to EMBER-
RF’s poor FPR on the original samples. From these observations, the majority
rule ensemble is effective in still producing a high TPR and low FPR as long as
the majority of the detectors are not evaded by a transformation technique.

Consensus Rule. The consensus rule ensemble requires all detectors to agree
that a sample is malicious before classifying it as such. This strategy tends to
yield a lower TPR but a much lower FPR, aiming for precision in identifying
malware. The results for the consensus rule are presented in Table 5. On the
original binaries, the FPR is at 0%, indicating no benign files are misclassified
as malicious. The TPR is moderate at 54.13%, indicating that only over half
of the actual malware are detected. The TPR significantly drops to 23.76%,
showing that the ensemble misses the majority of malware transformed to evade
MalConv; however, there is a slight decrease in TPR to 53.30% and 48.18% (when
compared to the original binaries) in the Ember-RF and SSDeep adversarial
examples, suggesting that these transformations slightly affect the consensus rule
malicious detection capability. On the other hand, the FPR increases modestly
to 6.93% for the MalConv adversarial set and slightly increases to 1.98% and
0.99% for the Ember-RF and SSDeep adversarial sets, respectively, which is still
relatively low, suggesting that few benign files are misclassified as malicious.

Keeping this in mind, the consensus rule ensemble appears to err on the side
of caution, opting for high specificity (low FPR) at the expense of sensitivity
(TPR). This means it is highly reliable at confirming benign files but at the risk
of failing to detect a significant amount of actual malware, particularly when
dealing with adversarially transformed malware targeting MalConv.

As we have shown detector ensembles have the capacity to detect adversarial
malware targeted against specific detectors, we draw attention to the renowned
tool of VirusTotal. VirusTotal is an ensemble of the leading anti-virus detection
tools in current use, against which we gather further evidence to support the
robustness of ensemble techniques against adversarial examples, we provide a
full description and results in Appendix C.

6 Are Highly Transformed Binaries Detectable?

We return to our discussion in the introduction on the necessity of keeping
perturbations to a program binary at a minimum. Recall that unlike the image
domain, an adversarially transformed program binary need not look similar from
a static code analysis point of view to its original binary, as long as it maintains
functionality. However, it has been pointed out in the literature that too many
changes to a program, e.g., via obfuscation, would make it easy to detect a
transformed binary as it would create new signatures [12, §4]. We first analyze
how much of the binaries has been transformed against each target detector,
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Fig. 3: Cumulative Distribution Function (CDF) vs. Normalized Levenshtein Dis-
tance (NLD) for All Three Adversarial Transformations

and then use a machine learning algorithm to distinguish between original and
transformed binaries.

6.1 Amount of Adversarial Perturbation

Recall that one of the goals of the attacker is to keep the amount of transfor-
mations to a minimum. To check how much perturbation is applied to a binary,
we use the normalized Levenshtein distance (NLD) on the original and trans-
formed binaries for each of the test sets used in Table 3. We show the cumulative
distribution function (CDF) of the NLD between the original and transformed
binaries in Figure 3. The majority of the binaries transformed with MalConv
and EMBER-RF as targets, are within 10% NLD of their original counterparts,
indicating little changes to the codes of these binaries. On the other hand, the
binaries transformed for ssdeep evasion are substantially changed. Note that
this is also due to the different transformation techniques used for this detector:
IPR vs Disp. From the adversarial point-of-view, too many changes are not ideal
as we discuss in the next section.

6.2 Detecting Highly Transformed Binaries

To evaluate whether highly transformed binaries are more easily detectable we
trained two machine learning models to classify original and transformed bi-
naries, i.e., transformed via malware makeover. The first classifier is a random
forest (RF) model while the second is the LightGBM model (briefly discussed
in § 3.2), which is a tree-based lightweight gradient boosting framework built
on an ensemble of weak learners (typically decision trees) to create a strong
predictive model. The two models were trained on a data set split into 80%
for training and 20% for testing, which included both original and transformed
binaries. For both these models, we used raw bytes as the features. The results
in Section 6.1 show that when the target model is MalConv or EMBER-RF the
binaries are only slightly transformed in terms of the normalized Levenshtein
distance (NLD). On the other hand, the binaries are heavily transformed when
the target is ssdeep again concerning NLD. Thus, we would expect the models
to show better performance on the latter.
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Table 6: Comparative performance of the Random Forest and LightGBM
models on detecting adversarially transformed binaries with MalConv, Ember-
RF, and SSDeep as targets. TTB stands for targeted transformed binaries.

Target
Random Forest LightGBM

Acc TPR FPR Acc TPR FPR

MalConv TTB 63.11% 61.37% 35.07% 99.65% 99.77% 0.47%
EMBER-RF TTB 63.05% 58.18% 31.97% 98.53% 99.27% 2.23%

SSDeep TTB 71.45% 70.36% 27.51% 70.81% 71.35% 29.75%

Table 7: Comparative performance of the LightGBM model on highly modified
(top 20) and least modified (bottom 20) ssdeep targeted transformed binaries

Performance Metrics

Binaries Acc FS TPR FPR CM
(
TN FP
FN TP

)
SSDeep-Top-20 97.5% 97.56% 100% 5% 19 1

0 20

SSDeep-Bottom-20 52.5% 53.66% 55% 50% 10 10
9 11

Our results summarized in Table 6 are in contrast to this impression. The per-
formance for MalConv and EMBER-RF targeted transformed binaries is com-
parable with TPRs of 61.37% and 58.18% and FPRs of 35.07% and 31.97%,
respectively, indicating moderate success. But the RF model shows improved
performance on binaries transformed via ssdeep: 70.36% TPR and 27.51% FPR.
However, the LightGBM model shows an almost perfect TPR of more than 99%
and a relatively low FPR of 0-2%, while showing similar performance to the RF
model on ssdeep transformed binaries. This discrepancy may be mostly due to
the difference between the types of transformation used in the three detectors:
MalConv and EMBER-RF use the Disp transformations whereas ssdeep uses
the IPR transformations.

We hypothesize that the high classification performance of detecting Disp
transformations is the inclusion of semantic nop operations. These semantic nops
may present as unusual, out-of-place values of high entropy which are leveraged
as an indicator for transformation by the classifiers of this section. On the other
hand, ssdeep’s IPR operations are more subtle, thereby blending into the orig-
inal binaries, however, with too many replacements, as seen in the binaries of
large NLD, detection becomes possible again.

Therefore to test whether high transformations lead to better detection, we
trained the LightGBM model on ssdeep original and transformed binaries only,
as we focus on only one type of transformation. We then test the model’s perfor-
mance on the top 20 and bottom 20 transformed binaries in terms of NLD. Our
results in Table 7 show that the model almost perfectly predicts highly trans-
formed binaries, and shows no better than random guesses on binaries that are
least transformed. This suggests that highly transformed binaries may be easier
to detect as malware, as one would expect benign binaries to not be using mal-
ware makeover or other transformation techniques so heavily. This justifies the
adversarial objective of making minimum perturbations to the original program.
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7 Related Work

Our work investigates the robustness of malware detectors against adversarial
software binaries when transferred to detectors of different feature sets and model
architectures.

Adversarial malware observes roots from adversarial examples, where subtle
changes induce misclassifications in machine learning models [1]. Deep learning
architectures, increasingly used in malware detection, are particularly vulnerable
to such inputs [28,29]. Core to producing such examples, we have shown in
Section 6.1, the importance of limiting perturbation size in malware, as with
larger transformations, comes increased detection by SSDeep.

Recent research has demonstrated the transferability of adversarial malware
under various conditions. Demontis et al. [30] show that adversarial malware can
transfer when the complexity of the target model is high, and the gradients of
the models are aligned. A more recent study reveals [7] that transferability exists
across a diverse range of models, including Neural Networks, SVM, Logistic Re-
gression, and Random Forest, provided the feature space remains consistent. Our
study explores the transferability of adversarial malware when the feature space
is significantly different. We have shown that adversarial malware does not easily
transfer between foundationally different detectors. Further, with these differing
models, existing defences like adversarial training that would enhance model ro-
bustness against adversarial malware [13,31,32]. Not all detector architectures
lend themselves to be augmented with additional training information.

For example, our use of ssdeep is representative of similarity-based detection,
and not an inherently deep process, thereby complementing traditional adversar-
ial malware creation. We do note the development of deep-learning structures
within hashing-based approaches, notably, NeuralHash. NeuralHash combines
both deep learning and hashing techniques [33], unfortunately, the deep struc-
tures may potentially harbour vulnerability to adversarial attacks.

8 Conclusion and Future Work

We have demonstrated that malware binaries adversarially transformed to evade
a single detector often fail against multiple detectors, especially if they employ
diverse architectures. Our study involved detectors based on raw binary bytes,
feature extraction (EMBER), and locality-sensitive hashing. To mitigate the
impact of adversarial transformations, employing an ensemble of detectors with
majority rule is a straightforward approach. While this ensemble can still be
evaded by sophisticated adversaries, it increases the perturbation to the binary,
leading to identifiable signatures for transformation techniques. As observed,
highly transformed binaries are easily detectable. An interesting area for future
work is to develop an adversarial transformation algorithm that can defeat a
majority of detectors in an ensemble while keeping changes to a minimum.
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Appendix

A Malware Makeover
White-Box Attack. The white-box malware makeover attack targets a machine
learning detector that uses gradient descent to minimize its loss, for example, a
neural network. Let b denote a raw binary. We assume an embedding function
E that takes a binary b and outputs a feature vector x. The white-box malware
makeover algorithm takes a function f ∈ b, and transforms it to produce a new
binary b′. Let E(b′) = x′. These transformations will be introduced shortly.
The transformed binary can be represented as x′ = x+δ. If the resulting vector
increases the loss of the detector then the transformation is retained, otherwise
it is rejected. We can view the displacement vector as δ = αg(x). Here α > 0 is
a small scalar, and g is the gradient w.r.t. input x. Let ℓ(x) denote the loss on
input x. Then using Taylor’s approximation:

ℓ(x+ δ) ≈ ℓ(x) + ⟨g(x), δ⟩ = ℓ(x) + ⟨g(x), αg(x)⟩
= ℓ(x) + α⟨g(x), g(x)⟩ = ℓ(x) + α∥g(x)∥22 > ℓ(x).

Thus, after obtaining x′, we check if the dot product ⟨g(x), δ⟩ > 0, where δ =
x′−x. If this is true, then the loss has increased. In other words, we are traveling
in the direction of the gradient to increase loss. At some point, the loss becomes
high enough for the detector to misclassify, at which point the algorithm stops.

Black-Box Attack. Let us assume that we have the cross-entropy loss. Then if
K denotes the number of classes and c is the index of the correct label (one-hot
encoded), we have:

https://hex-rays.com/
https://github.com/elastic/ember/blob/master/ember/features.py
https://github.com/elastic/ember/blob/master/ember/features.py
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ℓ(x) = −
K∑
i=1

yi ln pi(x) = − ln pc(x).

Rearranging we get: e−ℓ(x) = pc(x).
Thus, we can instead check if pc(x

′) < pc(x). If that is the case then neces-
sarily ℓ(x′) = ℓ(x+ δ) > ℓ(x). The advantage is that this makes it a black-box
attack rather than a white-box attack since we do not need to compute the gra-
dient. The above should work for any loss function since: ℓ(x) ∝ 1/pc(x), Hence
this attack can be applied to models other than neural networks (which usually
employ gradient descent). This black-box attack is also mentioned in [9]. The
main point where the white-box attack from [9] deviates from its black-box coun-
terpart is where we can set arbitrary integer values to semantic nops. To use an
example from [9], suppose the integer value of the semantic nop corresponds to
the ith byte in the binary b. We replace the ith byte of b by b ∈ {0, 1, . . . , 255},
such that the dot product ⟨g(E(b)), δ⟩ is maximized, where δ = E(b′) − E(b)
and

b = (b1, b2, . . . , bi, . . . , bn)

b′ = (b1, b2, . . . , b
′, . . . , bn)

for a binary of length n bytes. However, we could do the same attack in the
black-box setting by replacing the ith byte of b by every possible byte value
b ∈ {0, 1, . . . , 255} and choosing the resulting binary b′ that results in the least
probability pc(E(b′)). Of course the drawback here is that we need to do infer-
ence a total of 256 times for each such semantic nop (instead of obtaining this
information through the gradient in the white-box version of the attack).

B Adversarial Example Attack on ssdeep:

One of the attacks on ssdeep reported in [24] when the input is natural language
text is to change one byte in each chunk. To ensure that trigger points are not
impacted, the last 7 bytes in each chunk are left untouched (corresponding to the
window size). In fact, by utilizing the fact that the ssdeep similarity checking
algorithm only considers a match if there is one common substring in the two
hashes of length 7 [24], even less number of changes need to be made. A simpler
version of this attack, that makes changes to a character in every substring of
size b ≈ n/64, seems to work nearly 100 percent of the time. Thus, we need not
even identify chunks. This can be explained as follows. The rolling hash identifies
the end of a chunk if the current byte sequence evaluates to −1 (mod b). If the
rolling hash is pseudorandomly distributed, then the probability that the current
sequence of bytes evaluates to this is 1/b. The probability that a chunk has not

been identified in the first 7b rolling windows is given by: (1− 1/b)
7b ≈ e−7 =

0.00090359397765.
This is very low, and hence the probability that the simpler attack will work

is high. Implementing this attack in the malware domain requires changes in each
chunk of a given binary file. To maintain functionality, these changes should be
meaningful. One such example could be using code substitution. For instance,
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Fig. 4: CDFs of VirusTotal detection rates for benign and malware before and
after transformation.

among the different transformation types mentioned in the work from Lucas et
al. [9] to evade a target machine learning malware detector is replacing instruc-
tions with equivalent ones, which preserve length. For example, sub eax,4 can
be replaced by add eax,-4. This is an example of an IPR transformation. If
each block contains such an instruction, we can replace them with equivalent
ones and be able to evade detection via ssdeep.

C Results on VirusTotal

A major motivation for us to assess the performance of an ensemble of detectors
to mitigate adversarial examples is the use of reports from multiple security ven-
dors (scanners) by VirusTotal. This provides a buffer against misclassifications
as long as there is consensus amongst multiple scanners. To check the detection
rate of the transformed binaries by VirusTotal, we took the 101 benign and 606
malware binaries (total of 707 binaries) common amongst the three target de-
tectors (Table 4). We then use the VirusTotal API with each original binary and
its transformed variant to obtain labels returned by the VirusTotal scanners.
The total number of scanners varies across binaries, with a minimum of 51 and
a maximum of 72 scanners, averaging 70.78% per binary. From the labels thus
returned, we define the detection rate as being the fraction of scanners labelling
the given binary as malware.

Figures 4 (a), (b), and (c) depict the results for malware binaries when
targeted by MalConv, EMBER-RF, and ssdeep detectors, respectively. In all
cases, the detection rate of transformed malware binaries notably decreases.
Conversely, the detection rate increases for transformed benign binaries, espe-
cially for MalConv and EMBER-RF, suggesting that the transformations de-
ceive scanners into identifying benign binaries as malware. Binaries targeted
with ssdeep as the detector show a lower likelihood of misclassification com-
pared to the other two detectors. Employing the majority rule (detection rate
of 0.5) indicates minimal misclassification of malware binaries by the scanners.
This suggests that using an ensemble of detectors with majority rule could be an
effective measure against adversarial attacks on malware binaries, as discussed in
Section 5. Moreover, attempts by adversaries to evade multiple detectors would
likely increase perturbation in the original binary, resulting in its detection as
malware, as discussed in Section 6.2.
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