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Abstract—Increased cloud adoption in healthcare has amplified
ransomware and malware threats, accounting for 19% of global
breaches in 2024. Despite this surge, the behavior of attackers
exploiting healthcare systems remains under-explored in aca-
demic literature. This paper bridges that gap by deploying a
scalable and stealthy deception network specifically designed for
healthcare environments. The network comprises 30 real-world
vulnerable healthcare web applications, mimicking domain-
specific workflows across multi-cloud infrastructures, such as
patient registration and billing. We leveraged ATTACK-BERT
to generate semantic embeddings and applied co-regularized
spectral clustering with normalized cuts to analyze multi-protocol
attack traffic. Our analysis revealed nuanced attacker behaviors,
including regional and protocol-specific variations, exploitation of
healthcare protocols like HL7, and the use of encryption to bypass
detection. A comparative sub-study further showed that attackers
deliberately engage with vulnerable systems, highlighting the
strategic value of deception-based defenses. By focusing on
behavioral insights within healthcare-specific settings, this work
lays the groundwork for integrating deception into the broader
security posture of critical infrastructures.

I. INTRODUCTION

The post-COVID era has seen rapid healthcare digitization
globally. A significant number of healthcare organizations
have migrated to cloud-based technologies, driven by the
need for scalability, improved data management, and enhanced
collaboration [1]]. By 2023, approximately 70% of healthcare
organizations had transitioned to cloud-based solutions, with
an additional 20% expected to migrate by 2025 [2].

While this shift has brought significant operational benefits,
it has also introduced substantial cyber risks. The healthcare
sector, in particular, has become a prime target for cyberattacks
due to the sensitive and high-value data it processes, includ-
ing Electronic Medical Records (EMRs), billing information,
and diagnostic workflows. In 2023 alone, over 87 million
patient records were compromised, a dramatic increase from
37 million in 2022 [3[]. These statistics highlight not only
the sector’s growing vulnerability but also its attractiveness
to sophisticated attackers who exploit healthcare systems’
reliance on interconnected, cloud-based infrastructures.

Cloud-based healthcare applications provide access to
healthcare professionals, patients, and other stakeholders via
the Web. However, securing these applications presents unique
challenges due to their dependence on domain-specific stan-
dards and protocols, such as: the International Classification
of Diseases (ICD-10) [4] for diagnoses and the National Drug
Code (NDC) [3]] for drug identifiers and on the Health Level
Seven (HL7) messaging protocol [6ﬂ to move those codes
between systems.

While these structured coding systems and messaging stan-
dards enhance operational efficiency and interoperability in
healthcare, they also introduce predictable attack surfaces that
can be leveraged by adversaries. In particular, the widely
adopted HL7 v2.x protocol including message types such
as Admission-Discharge-Transfer (ADT) and Order Entry
Message (ORM) is frequently transmitted over unsecured
channels [7]], [8]. This lack of encryption and authentication
significantly increases the exposure of healthcare networks to
targeted cyberattacks [9]-[11]].

In addition, traditional general-purpose security solutions,
such as firewalls, intrusion detection systems, and security
information and event management (SIEM) platforms, are
often insufficient to secure healthcare infrastructures, which
operate under unique regulatory, operational, and technological
constraints. Several studies [[12]] [[13]] [14] have highlighted that
these conventional tools frequently overlook domain-specific
threats, such as those exploiting healthcare protocols (e.g.,
HL7) or legacy medical systems. This highlights the need
for customized cybersecurity strategies that integrate domain
expertise with modern defense mechanisms.

In parallel, as healthcare organizations increasingly migrate
to cloud environments, new risks, particularly those involving
the protection of sensitive patient data have emerged. To
mitigate these risks, Attack Surface Management (ASM) has
become a widely adopted defense strategy. ASM typically
involves: (i) the continuous discovery, monitoring, and as-

'ICD-10 and NDC are classification schemes; HL7 is a transport protocol.
In our deployment, ICD-10/NDC values are carried inside HL7 message fields.



sessment of external-facing digital assets, and (ii) the iden-
tification of software vulnerabilities, exposed services, and
mis-configurations [15]-[17]. While ASM offers a structured
framework for identifying external threats, its applicability in
healthcare remains limited. This is primarily due to domain-
specific standards such as ICD-10, NDC, and HL7 which
create unique and complex attack surfaces that generic ASM
tools are ill-equipped to monitor.

These limitations are evident in real-world incidents. For
example, in Australia, the healthcare sector accounted for
19% of all data breach notifications under the Notifiable
Data Breaches (NDB) scheme in the first half of 2024 [18]].
Globally, targeted ransomware attacks and data ex-filtration
campaigns have increasingly focused on cloud-based health-
care infrastructures [[19], underscoring the need for proactive,
domain-aware security approaches that extend beyond tradi-
tional ASM capabilities.

To fill this gap, deceptive technologies particularly honey-
pots offer a promising, complementary solution. Honeypots
are decoy systems designed to attract attackers and capture
detailed telemetry of their behavior. When tailored to emulate
realistic healthcare workflows and vulnerabilities, they yield
rich insights into attacker methods, preferences, and intent [3]].
Such intelligence enables the design of bespoke cybersecurity
defenses that are responsive to the unique characteristics and
evolving threat landscape of the healthcare domain.

This paper presents a healthcare-specific deception network
designed to simulate real-world attack surfaces through vul-
nerable web applications. These applications replicate key
healthcare workflows to attract and monitor malicious activity
in cloud environments. To ensure consistency and fairness in
our evaluation, we deployed honeypot virtual machines across
the Sydney regions of three major cloud providers: AWS
(ap—southeast-2), Azure (australiaeast), and OVH
(au—-syd-1). This geographic co-location minimized latency
discrepancies and enabled unbiased, cross-cloud comparisons
of attacker behavior.

Our deception environment addresses several non-trivial,
domain-specific challenges unique to healthcare systems.
Specifically, it integrates standardized coding systems ICD-
10 for diagnoses and NDC for drug identifiers within HL7
message structures to faithfully emulate authentic medical
communication. To enhance detection and maintain stealth,
we incorporated canary tokens to identify early reconnais-
sance efforts and employed dynamic data rotation to prevent
fingerprinting by adversaries. Leveraging open-source health-
care platforms embedded with honeypot frameworks like T-
Pot [20], we captured rich telemetry on attacker interactions.
To extract actionable insights, we applied advanced machine
learning and co-regularized spectral clustering techniques, un-
covering nuanced behavioral patterns, protocol-specific abuse
vectors, and regional differences in attack strategies.

Our study is guided by the following key research questions:
« RQ1: How can deception-based analysis reveal healthcare-

specific attack patterns and vulnerabilities that are typically

missed by generic honeypots?

« RQ2: What regional and protocol-level variations exist in
attacker tactics, and how do they manifest across cloud-
hosted deception networks?

« RQ3: What trends and insights can be uncovered from mal-
ware and hash propagation across different cloud providers?
By addressing these questions, we aim to advance the un-

derstanding of attacker behavior in the healthcare domain and

demonstrate the value of domain-specific deception strategies
in supporting tailored cyber defense.

Our work makes the following key contributions:

We design and deploy a scalable deception network (cf.

for healthcare environments, integrating 30 real-world open-

source healthcare applications simulating realistic healthcare
workflows by embedding ICD-10 and NDC codes inside

HL7 messages. The setup was deployed across AWS, Azure,

and OVH in Sydney, Australia. In a 30-day run, the network

captured 1.2M attacker events, 73% of which hit healthcare-

specific endpoints; its Shodan Honeyscore stayed at 0.0

for the full month, confirming stealth. Cross-cloud analysis

reveals, for example, that OVH receives 3.9x more botnet
traffic than AWS, while AWS attracts a TLS-encrypted
ransomware pattern absent on Azure (§VII).

e We evaluate three  specialized masked-language

models ATTACK-BERT [21]], SecRoBERTa [22]], and

SentSecBERT [23]] tuned for security domain. We found

that the ATTACK-BERT achieved the highest clustering

utility (Silhouette = 0.72, Normalized Mutual Information

(NMI) = 0.68) and the best downstream F1-score (0.83),

delivering a +13% improvement over the best model §V).

To gain behavioral insight of the malicious actors, we

employ Multi-view spectral clustering (§V-§VII). In par-

ticular, we combine four complementary views—semantic,
temporal, numerical, and categorical feature spaces with co-
regularized spectral clustering (A = 1.0, K = 8). As aresult,
we uncover eight key attack patterns. Moreover, this fused
approach increases Adjusted Mutual Information by +37%
over the strongest single-view baseline. It exposes patterns,
such as an early morning automated scan campaign against

EMR and EHR systems, and a TLS-encrypted ransomware

staging pattern targeting specific clouds.

Artifact availability. All Docker build configurations and

analysis scripts used in this study have been open-sourced

under the Apache 2.0 license [24]. While the complete dataset
is not publicly available due to sensitivity concerns, it can be
provided to the research community upon request.

II. BACKGROUND AND RELATED WORK

Previous studies have explored various techniques for in-
vestigating attacker behavior in distributed, networked ap-
plications. However, measuring and analyzing how attackers
specifically target healthcare infrastructures remains challeng-
ing due to issues such as scalability, real-time analysis, and
the correlation of attacker activities with network-layer obser-
vations and device context. We categorize these approaches
into three main areas: deception-based defenses and honey-
pots, integrated ASM with honeypots, and honeypot detection



prevention. The first category of techniques lures attackers
to interact with the system, enabling researchers to analyze
their behavior and strategies. The second category focuses on
monitoring and analyzing attacker activities relevant to specific
organizational contexts, offering tailored insights for improved
defense. The last one aims to protect honeypots from being
detected by attackers, ensuring the integrity and effectiveness
of the deception mechanisms.

Deception-Based Defenses and Honeypots. Deception-
based defenses like honeypots are widely used to analyze
attacker tactics and techniques [25]. Several studies have
deployed honeypots to analyze vulnerabilities in applications,
providing invaluable insights into attacker behavior. These
honeypots have been implemented in diverse environments,
including generic cloud instances [26], [27]], educational
networks [28]-[32], and network telescopes [33[]-[36].

Commodity honeyfarms (e.g. Cowrie, Dionaea) mainly cap-
ture ambient SSH/SMB scans; quantifies how attacker be-
haviour shifts when electronic-health-record (EHR) workflows
are present.

ASM Integration with Honeypots. ASM has become a
critical framework in modern cybersecurity, especially as the
attack surfaces of organizations continue to expand due to
cloud adoption. Zhang et al. [15] introduced network attack
surface mapping as a method for identifying potential entry
points for attackers, emphasizing continuous monitoring and
adaptive defenses. In traditional ASM, the focus is often on
passive monitoring and identifying attack surfaces through
static analysis of network configurations, software vulnera-
bilities, and external-facing services [16], [[17]. A related
approach is presented in [37|], where a honeynet architec-
ture utilizing containers is proposed for generalized cyber
deception. While their work focuses on synthetic environments
and broad attack simulations, it does not specifically engage
with sector-specific vulnerabilities or protocols. In contrast,
our approach advances this concept by deploying a deceptive
network comprising real vulnerable web applications targeting
healthcare-specific threats.

Honeypot Detection. The effectiveness of honeypots relies
heavily on their ability to remain undetected by adversaries.
If attackers can easily identify honeypots, they may avoid in-
teracting with them, reducing the honeypot’s ability to capture
malicious activities. Several studies have explored techniques
to detect honeypots, focusing on how attackers identify such
environments by exploiting protocol deviations, system re-
sponses, or virtualized settings [38]], [39]. For example, [40]
demonstrated how attackers use simple signatures to detect
widely deployed open-source honeypots through services like
Censys [41] and Shodan [42].

Vetterl et al., [39] revealed systematic methods to fingerprint
medium-interaction honeypots by analyzing transport layer
deviations in protocols like SSH and Telnet. These tools allow
adversaries to detect honeypots without completing proto-
col handshakes, significantly reducing the honeypot’s value.
Furthermore, services like Shodan’s ‘“Honeyscore” provide
estimates of an IP address’s likelihood of being a honeypot, of-

fering attackers a straightforward way to avoid detection [42].
Given the ongoing arms race between honeypot developers
and attackers, it is crucial to continuously improve honeypot
stealth, reduce detectable patterns, and make them harder to
distinguish from legitimate systems.

III. MOTIVATION AND DESIGN REQUIREMENTS

Designing effective deception systems for healthcare envi-
ronments necessitates addressing a range of domain-specific
challenges—including complex clinical workflows, strict reg-
ulatory requirements, and increasingly sophisticated cyber
threats. These challenges are further compounded by the
sector’s reliance on standards such as the HL7 messag-
ing protocol [6], and coding schemes like ICD-10 [4]] and
NDC [5]]. While existing deception systems have shown suc-
cess in general-purpose settings, they frequently fall short
in replicating the nuanced operational and technical char-
acteristics of healthcare infrastructures. Generic honeypots,
for instance, lack HL7 messages populated with ICD-10
and NDC codes, a combination that is essential to emu-
late real-world healthcare workflows. HL7 facilitates clinical
data exchange through structured messages like Admission-
Discharge-Transfer (ADT) (e.g., MSH...PID...). A simplified
example of an ADT message is shown in Listing [I]

Listing 1: Example HL7 ADT"AO1 message segment contain-
ing a patient’s data.

MSH|""\&|HOSPITAL_A|EHR|20250120| |ADT"A01[123]
— P|2.4PID|11987654321| |DOE"~JOHN
— 119850515|M

This message indicates that a patient named John Doe was
admitted to a hospital on January 20, 2025. While essential
for interoperability, such messages are often transmitted over
unencrypted networks, making them vulnerable to exploitation
during reconnaissance or lateral movement phases of attacks.

In addition to messaging standards, the use of structured
medical codes is central to healthcare operations. ICD-10
codes, such as E11.9, represent diagnoses (e.g., “Type 2
diabetes mellitus without complications”), while NDC codes,
like 0781-1842-10, identify specific pharmaceuticals (e.g.,
a bottle of 100 furosemide 40 mg tablets). These codified stan-
dards not only streamline clinical workflows but also define
predictable, high-value targets in underprotected systems.

Conventional deception systems often simulate static or
generic environments and fail to scale dynamically. Many
lack the fidelity required to deceive adversaries familiar
with healthcare-specific technologies. Moreover, such systems
frequently rely on low-interaction traps, which may detect
superficial scans but fail to engage attackers employing ad-
vanced techniques such as lateral movement or targeted data
exfiltration.

Rationale for Modeling HL7. In designing our deception
network, we chose to emulate HL7 v2.x over FHIR due to its
visibility at the network layer and its broader real-world usage.
HL7 v2.x messages are typically transmitted in plaintext using
MLLP over TCP port 2575, making them fully inspectable




by packet-level sensors such as Suricata. In contrast, FHIR

is usually encapsulated in HTTPS and protected by OAuth,

rendering payloads opaque to standard network monitoring
tools.

Adoption statistics further support our choice: over 90% of
U.S. Health Information Exchange (HIE) organizations rou-
tinely use HL7 v2.x, compared to only about 20% who have
adopted FHIR [7]], [8]]. Moreover, HL7 v2.x has been the target
of real-world attacks, making it a relevant and high-value
deception surface. For instance, ICSMA-21-007-01 documents
a segment injection vulnerability in patient monitors, while
CVE-2023-43208 describes an unauthenticated RCE flaw in
Mirth Connect, a widely used HL7 integration engine [43]],
[44]]. These risks show the practicality of modeling HL7 v2.x
in deception-based security infrastructures.

Emulating a Realistic Healthcare Environment. A natural
question arises: how closely does our deception network
resemble a professional healthcare environment? In practice,
modern hospitals integrate subsystems for patient registration,
clinical order management, billing, pharmacy, laboratory ser-
vices, and message brokering. In high-income countries, such
capabilities are dominated by proprietary EHR platforms, most
notably Epic and Oracle Cerner, which serve approximately
42% and 23% of U.S. acute-care hospitals, respectively, and
together account for more than half of all inpatient beds [45]].
However, these platforms require licensing and deployment
costs that range from $5-10M for a 300-bed facility, and can
exceed $500M for large health systems [46]. Furthermore,
contractual obligations often prohibit active security testing,
making them unsuitable for use in deception networks.

To overcome these constraints, we constructed a legally
shareable and technically faithful alternative by mapping real
hospital workflows to open-source software analogues with
known vulnerabilities. Our stack includes OpenMRS (used
in over 8,100 sites across 80 countries, with 22 million
patients [47]), OpenEMR (used by over 100,000 providers
with over 200 million patient records [48[]), Mirth Connect
(with over 10,000 installations [49]]), and 27 other applications.
As summarized in Table [V] (in Appendix), this 30-application
stack reproduces more than 70% of the functional surface
found in professional healthcare settings while remaining
freely redistributable for security research.

Design Requirements. Our proposed deception network
addresses four core requirements that underpin effective emu-
lation and resilience against advanced threats:

e RI: Scalability. The network must operate seamlessly across
heterogeneous cloud environments, dynamically adapting to
the evolution of the attack surface and ensuring continued
functionality in diverse deployments.

e R2: Fidelity to Healthcare Workflows. To realistically mimic
clinical operations, the network must generate HL7 mes-
sages populated with valid ICD-10 and NDC codes. It must
also simulate common vulnerabilities in systems such as
registration portals and billing interfaces.

e R3: Real-Time Threat Analysis. The system should support
real-time collection and processing of attack data, enabling

rapid identification and analysis of emerging threats.

e R4: Stealth and Evasion. To resist detection by advanced
reconnaissance tools (e.g., Shodan), the deception network
must implement techniques such as dynamic data rotation
and regular validation of exposed services to maintain
operational stealth.

These requirements form the foundation of our system
architecture (cf. , enabling the construction of a realis-
tic, scalable, and interactive deception environment that both
attracts sophisticated adversaries and yields actionable insights
into attacker behavior within healthcare domains.

IV. DECEPTION NETWORK DESIGN

In this section, we present our end-to-end methodology
and the architecture of our deception network, developed to
analyze attacker behavior in healthcare-specific multi-cloud
environments. Figure [I] illustrates the architecture of our
deception network. It comprises three interconnected layers:
the Application Layer, the Data Collection and Analysis Layer,
and the Monitoring and Visualization Layer. Each layer is
specifically designed to fulfill distinct roles, ensuring the
system is scalable, interactive, and capable of providing real-
time insights while remaining undetectable to attackers [2§]].

In the following, we explain how this architecture directly
addresses the core design requirements (cf. for effective
emulation and resilience against advanced threats.

Application Layer

Health A n H t:
(DOCkerIZEd) -
S
—————
Network Intrusion Data Collection
" Wazuh Agents
Detection System Layer
—————
Kibana M.onltc.mn.g & -
Dashboards Visualization Enrichment
Layer

Fig. 1: Architecture of the proposed deception network, high-
lighting the layered structure and key components.

A. Application Layer: Emulating Real-World Workflows

As a foundational layer of our deception network, we simu-
lated realistic healthcare workflows to attract attackers target-
ing domain-specific vulnerabilities. To achieve the scalability
requirement (R1), we deployed 30 open-source healthcare
web applications, each as an isolated Docker container, to
replicate critical functions such as patient registration, billing,
and diagnostics. We selected these applications based on high-
severity vulnerabilities reported in the National Vulnerability
Database (NVD) [50] and the CVE repository [51f]. The cho-
sen vulnerabilities reflect common healthcare-specific attack
vectors, including SQL injection in patient registration portals,
cross-site scripting (XSS) in billing systems, and cross-site
request forgery (CSRF) in scheduling interfaces creating a
realistic and attractive attack surface for malicious actors.



Table [V] in the Appendix provides details of the selected
applications, ensuring a diverse and realistic foundation for
potential attacks within healthcare environments.

For the fidelity requirement (R2) of our deception network,
we generated synthetic data using Python’s Faker library [52],
which we extended with healthcare-specific standards to reflect
domain-relevant structures and semantics. We synthesized
patient demographics, diagnostic records, and billing metadata
with internal logical consistency and stored them in Mari-
aDB databases. To ensure clinical plausibility, we embedded
structured medical codes such as ICD-10 and NDC identifiers
directly into HL7 ADT messages.

We programmatically linked patient records across diagnos-
tic and billing components to maintain coherence throughout
the simulated workflow. We then integrated these enriched
datasets into containerized healthcare applications deployed
across three major cloud providers: AWS, Azure, and OVH.
We dynamically generated HL7 ADT messages with random-
ized patient identifiers, timestamps, and control numbers to
emulate authentic clinical communications. These messages
were processed through RESTful endpoints, ensuring that the
underlying databases reflected realistic healthcare operations
and supported the fidelity of our deception environment.

For stealth and evasion requirement (R4), we enabled re-
connaissance detection through the strategic deployment of
Canary tokens [53]], which we embedded in sensitive fields
within the synthetic datasets, such as URLSs in patient portals,
metadata in downloadable files, and fake credentials within
application forms. When accessed, these tokens silently logged
attacker interactions without raising suspicion, allowing us to
gain visibility into their targeting strategies. For example, a
Canary token embedded in a patient registration URL success-
fully identified malicious IP addresses scanning for vulnerable
endpoints. We integrated these alerts into our monitoring
framework to support real-time analysis.

By combining intentionally vulnerable web applications,
synthetic data aligned with healthcare standards, dynamic
workflow simulations, and monitoring mechanisms such as
Canary tokens, we constructed an application-layer environ-
ment with high fidelity. This design ensures that attackers en-
gage with realistic scenarios, enabling us to collect actionable
intelligence on domain-specific attack behaviors.

B. Data Collection Layer

We gathered, processed, and enriched logs generated by the
Application Layer to enable structured, high-fidelity analysis
of attacker behaviors. We deployed a suite of open-source
tools and designed a custom pipeline to ensure comprehensive
coverage and meaningful threat intelligence extraction.

Data Collection. We began by configuring Wazuh [54],
an open-source security monitoring platform, to collect logs
from our healthcare web applications, honeypots, and sup-
porting infrastructure. Wazuh enabled us to detect threats,
monitor file integrity, and manage compliance. We mapped ob-
served attacker activities—such as reconnaissance, brute-force
attempts, and exploitation techniques to the MITRE ATT&CK

framework [55]], allowing us to generate structured threat
intelligence anchored in tactics, techniques, and procedures
(TTPs), such as T1110 (brute force).

To monitor network activity within our containerized en-
vironment, we employed Suricata [56], a high-performance
NIDS/PS, configured with AF_PACKET for efficient packet
processing. We developed custom Suricata rule sets tailored
to healthcare environments using sources such as Emerg-
ing Threats Pro [57]. These rules were designed to detect
healthcare-relevant behaviors including DNS tunneling, TLS-
based reconnaissance, and data exfiltration. We iteratively
tuned and validated the rules to minimize false positives
while preserving detection accuracy, following established best
practices [58]], [59].

We used Logstash [60], part of the ELK stack [61], to
normalize and parse logs from both Wazuh and Suricata.
Our pipelines extracted essential features such as source and
destination IPs, ports, timestamps, and payload metadata,
standardizing them into a unified schema. We then enriched
these logs by appending contextual information, including
GeolP locations, Autonomous System Numbers (ASN), and
Common Vulnerabilities and Exposures (CVE) identifiers.
This enrichment allowed us to derive deeper insights into
attacker infrastructure, origin, and targeted vulnerabilities.

Filtering and Enrichment. To reduce noise, we filtered
out benign traffic using metadata tags and threat intelligence
from IP reputation databases such as GreyNoise [62]. This
allowed us to focus our analysis on confirmed malicious
activity. Enriched logs were retained for deeper inspection and
clustering. We preprocessed raw logs to ensure consistency and
reliability. We normalized timestamps, flattened nested data
structures, and removed redundant entries. Protocol-specific
fields were standardized across records to support efficient
enrichment and downstream clustering.

Addressing the scalability (R1) and real-timeliness require-
ments (R2) of our deception network, we integrated Wazuh
and Suricata by aligning architectural differences between their
respective backends. Specifically, while our T-Pot [20] honey-
pot environment utilized the ELK stack for log management,
Wazuh operated on an OpenSearch backend. To reconcile these
differences, we customized Logstash pipelines to unify the
schemas and merge the two data streams into a cohesive
dataset. This integration enables real-time analysis at scale
and ensures that our data collection framework remains scal-
able and coherent, effectively supporting deployment across
expanding and heterogeneous environments.

Clustering Analysis. We employed ATTACK-BERT [21]]
to generate semantic embeddings from textual and categor-
ical fields in the enriched logs. These embeddings captured
nuanced relationships between attacker behaviors and system
attributes. We then applied multi-view spectral clustering to
the embedded data, which allowed us to identify protocol-
specific abuses, geographic and regional targeting variations,
and evidence of coordinated or campaign-driven attacks.



C. Monitoring and Visualization Layer

The Monitoring and Visualization Layer enables real-time
tracking of attacker behavior while preserving the stealth and
operational integrity of the deception network. This layer
directly addresses the design requirements of R3: Real-time
Analysis and R4: Stealth.

The enriched logs of the Data Collection Layer were
indexed using Elasticsearch [61] and visualized using
Kibana [63]]. We developed interactive dashboards to monitor
critical metrics such as attack frequency, protocol usage, and
geographic origin of threats. For instance, SQL injection
attempts against HL7 endpoints were traced back to attacker
IP addresses and regions, providing immediate, actionable
insights to inform defensive responses.

To meet the stealth requirement, we periodically regenerated
synthetic patient records using the Faker library, introducing
continuous variability into the dataset. This dynamic content
reduced the risk of honeypot fingerprinting by adversaries. In
addition, outbound traffic from the deception environment was
tightly regulated. We enforced network policies that included
IP and port whitelisting, monitoring of egress traffic, and
blocking of unauthorized connections. These safeguards pre-
vented the infrastructure from being repurposed for malicious
operations and ensured that attacker interactions remained con-
fined and observable. By combining real-time data processing
with stealth-preserving mechanisms, this layer transforms raw
attack telemetry into operational intelligence while maintain-
ing the credibility and resilience of the deception network.

D. Dataset Overview and Filtering Strategy

To distinguish targeted healthcare-specific threats from
global background noise, we deployed a deception network
across AWS, Azure, and OVH cloud providers, each hosting
10 public IPs with Dockerized honeypots simulating HL7
endpoints, patient registration systems, and billing portals. The
network was active for four weeks (Jul 25-Aug 25, 2024), and
captured both passive scans and active attacker interactions
using Suricata in IDS mode. Overall, our deception network
captured 1,266.85 GB of traffic originating from 16,243 unique
IP addresses, 913 autonomous systems (ASNs), and 153
countries. A summary of the dataset is provided in Table [I|

TABLE I: Summary statistics of the captured dataset.

Metric Value
Total records 1,200,000
Total traffic (GB) 1,266.85
Unique public IPs 16,243
Unique ASNs 913
Unique countries 153

To filter out non-targeted noise, we compared our dataset
against the Orion Network Telescope [64], which monitors
unsolicited traffic across the global IPv4 address space. This
comparison allowed us to exclude IPs associated with indis-
criminate scanning, while enriching our analysis of unique,
localized behavior.

Cross-Telescope Comparison. Out of 16,243 source IPs
interacting with our honeypots, 6.5% were also observed by
Orion, indicating they were part of globally visible background
scanning activity. Conversely, 93.5% were unique to our de-
ception environment, suggesting targeted or localized scanning
behavior. Breakdown by cloud provider revealed significant
differences: AWS instances received traffic with only 0.86%
IP overlap with Orion, Azure showed 18.7%, and OVH had
80.4%. This highlights AWS’s potential in attracting more
targeted interactions, whereas OVH was more prone to botnet-
driven bulk scanning.

Port-Level Patterns. We further compared port activity
overlap with Orion. For AWS, only 11.3% of targeted ports
were seen in both datasets, compared to 32% for Azure and
100% for OVH. The complete overlap on OVH indicates that
traffic to those nodes was predominantly generic and botnet-
driven. In contrast, AWS traffic demonstrated a preference for
healthcare-specific services not visible in Orion data.

Filtering Heuristics. Guided by insights from Orion [64],
we refined the dataset to focus on meaningful attacker be-
haviors. We excluded IP addresses flagged as benign scan-
ners or linked to reputable organizations such as Palo Alto
Networks [[65], Censys [41], and Shodan [66] to minimize
background noise. However, we retained traffic associated with
known botnets, including Mirai, as it reflected ongoing mali-
cious campaigns relevant to the analysis. To ensure alignment
with the study’s healthcare focus, we prioritized interactions
targeting healthcare-specific endpoints such as HL7 systems
and medical billing portals.

E. Limitations and Ethical Considerations

Limitations. While our deception-based approach provides
valuable insights into attacker behavior within healthcare
environments, several limitations remain. First, we limited
our deployment to one month, which restricts our ability to
observe long-term attacker trends or seasonal variations. A
longer observation period could uncover persistent threats and
adaptive behaviors. Although we deployed realistic synthetic
healthcare data across multiple cloud platforms, we did not
validate our results against real-world incident data. This may
affect the generalizability of our findings. In future work, we
plan to collaborate with healthcare providers to incorporate
operational logs for validation.

Note that we generated synthetic workflows using Python’s
Faker library and enriched them with healthcare standards
such as ICD-10 and HL7. However, these simulations may
not capture the full complexity and variability of actual EHR
systems, which could influence how attackers engage with
the environment. We assessed stealth solely through Shodan’s
Honeyscore. While this provided an initial indication of our
honeypots’ detectability, it does not account for adversaries
using custom heuristics or alternative reconnaissance tools.
In future iterations, we aim to incorporate broader stealth
evaluations and emulate live traffic more closely. Also, our
focus was on system design and behavioral analysis, not
operational incident reporting. As such, we did not examine



runtime challenges or deploy system-level mitigations. We
intend to address these aspects in future work involving
production environments.

We did not include a control group of non-healthcare
honeypots, which limits our ability to conclusively attribute
certain behaviors to healthcare-specific targeting. Although
interactions with domain-specific services like HL7 endpoints
and billing portals suggest focused targeting, parallel deploy-
ment of non-healthcare decoys would allow more precise
differentiation between general and domain-specific attacks,
a direction we plan to pursue.

Finally, our study enumerates vulnerabilities from author-
itative databases [50] [51] and public PoCs [67] [68] rather
than re-validating each one experimentally. While typical for
large-scale field studies [69] [70]], this approach may leave
a small residual of mis-classified CVEs, which future work
could revisit under controlled lab conditions.

Ethical Considerations. Our research does not involve
human subjects or identifiable data, and thus does not re-
quire Human Research Ethics Committee (HREC) approval.
Nonetheless, we followed strict ethical practices in deploy-
ing honeypots. To minimize any potential harm, we have
taken several precautions to ensure that the honeypots do
not inadvertently expose or contribute to malicious activities.
Outbound traffic was controlled via a web application firewall
(WAF) to prevent misuse, particularly DNS amplification.
Additionally, UDP traffic was blocked to avoid potential DDoS
abuse. Continuous monitoring via Wazuh [54]-a SIEM tool-
ensured the honeypots remained uncompromised, aligning
with ethical standards in cybersecurity to minimize harm and
responsibly gather insights into attacker behavior.

V. CLUSTERING METHODOLOGY

Analyzing attacker behavior within noisy high-dimensional
datasets, particularly those derived from real-time deception
networks, requires techniques capable of uncovering hidden
structures and relationships that are not readily apparent
through rule-based or signature-driven analysis. Traditional
methods [[71] often fail to identify previously unseen or
evolving attack strategies, which are increasingly prevalent in
integrated healthcare threats [72].

To address this challenge, we adopted an unsupervised
learning approach centered on spectral clustering. This allowed
us to explore the data (cf. holistically, revealing protocol-
specific abuses, coordinated attack campaigns, and regional
variations in attacker behavior. By integrating semantics, tem-
poral, numerical, and categorical features through multi-view
spectral clustering [73]], we are able to capture rich, multi-
dimensional patterns across attacker interactions, aligning with
our overarching goal of understanding attacker tactics in
realistic, domain-specific settings.

The effectiveness of this approach lies on the careful feature
design and representations. We engineered features to repre-
sent multiple dimensions of attacker behavior, including the
semantic intent of payloads and signatures, temporal trends

of activities, numerical indicators such as engagement persis-
tence, and categorical attributes such as geographical origin or
affiliated autonomous system number or organization. These
engineered features form the basis of our multi-view clustering
pipeline, as detailed in the following subsections.

A. Feature Engineering and Preprocessing

To ensure robust and effective clustering, we applied a
comprehensive feature engineering strategy that transformed
textual, categorical, temporal, and numerical data into 768-
dim vector embeddings, one-hot binaries, cyclical (sine/cosine)
time features, and normalized real-valued metrics respectively
suitable for multi-view spectral clustering [73]]. A key focus
was on the quality of semantic representations, which play
an important role in capturing the intent behind attacker
interactions.

Selecting a transformer model for feature embed-
ding. Given our dataset comprises both semantic (i.e., Suri-
cata ‘flow_signature‘ and ‘http.request_body‘) and categori-
cal fields requiring embedding for clustering, traditional ap-
proaches such as TF-IDF fail to capture contextual seman-
tics and inter-token dependencies. To evaluate state-of-the-art
transformer encoders, we tokenized each flow’s signature and
payload (when present), concatenated the resulting tokens (up
to 128 per flow), and passed 1.2 million sequences through
three pretrained models ATTACK-BERT, SecRoBERTa, and
SentSecBERT without further fine-tuning. Using our cu-
rated dataset (cf. §III), we compared each model based on
clustering-relevant metrics: Silhouette Score, Normalized Mu-
tual Information (NMI), and Fl-score on a leave-one-flow-
out classification task. As shown in Table [ll, ATTACK-BERT
outperformed the alternatives, achieving a Silhouette Score of
0.72, NMI of 0.68, and an Fl-score of 0.83. These results
validate its capacity to encode nuanced semantic relationships
in cybersecurity telemetry, making it our preferred embedding
model for subsequent clustering analyses.

TABLE II: Comparison of embedding models for semantic
feature representation.

Model Silhouette Score | NMI | F1-Score
ATTACK-BERT [21] 0.72 0.68 0.83
SecRoBERTa [22] 0.64 0.59 0.79
SentSecBERT [23]] 0.58 0.52 0.76

Features representations. We used ATTACK-BERT to
generate dense vector embeddings of semantic features—attack
signatures and payloads. This transformer-based model applies
a bidirectional self-attention mechanism to capture contextual
token dependencies, enabling it to group semantically similar
attacks even when textual descriptions differ. For instance,
SQL injection attempts targeting both patient registration and
billing systems were clustered together due to their shared
intent. We extracted 768-dimensional embeddings from the
final hidden layer using mean pooling across tokens. To
balance computational cost with representational fidelity, we
set the maximum sequence length to 128 and used a batch
size of 32. We validated the quality of these embeddings



through cosine similarity heatmaps and t-SNE visualizations
(Appendix Figure [8a), which confirmed that semantically
related attacks formed distinct, interpretable clusters.

In parallel, we extracted categorical features such as
src_ip_asn_org and src_ip_country to capture ge-
ographic and organizational contexts. We applied one-hot en-
coding to convert these into binary representations suitable for
similarity calculations using Hamming distance. This approach
preserved categorical distinctions while allowing for effective
integration into our clustering pipeline.

For temporal features such as timestamp and
time_of_day, we used sine and cosine encoding to preserve
their cyclical nature. We computed pairwise similarities using
Euclidean distance to detect temporal clustering trends, such
as diurnal attack patterns or coordinated bursts of malicious
activity. Finally, we incorporated numerical features that
offered quantitative insights into attacker behavior. Metrics
such as protocol entropy, geo-distance, and activity duration
captured the breadth, geographic scope, and persistence of
attacker campaigns. We applied Min-Max normalization to
these features to ensure consistent scaling across dimensions
and prevent bias during clustering.

B. Spectral Clustering with Normalized Cut

Spectral clustering is well-suited to cybersecurity datasets,
particularly in deception-based environments, due to its ability
to capture complex, non-linear relationships through graph-
based representations. By modeling data points as nodes and
their pairwise similarities as weighted edges, we are able
to extract latent structural patterns across attacker behaviors.
This representation enables the identification of semantically,
temporally, and behaviorally similar attack vectors that may
elude traditional clustering methods.

To partition this similarity graph effectively, we employed
the Normalized Cut (Ncut) criterion, which optimizes cluster
separation by minimizing the similarity between different
clusters while maximizing intra-cluster coherence. This formu-
lation ensures well-defined, behaviorally consistent groupings,
enhancing interpretability and insight extraction.

a) Normalized Cut Criterion.: Formally, the normalized
cut objective is defined as:

Cut(A, B)
Assoc(A,V)

Cut(A, B)
Assoc(B, V)’

Ncut(A, B) = (1)

where:

o Cut(4,B) = > ,ca jep Wi quantifies the total edge
weight between clusters A and B.

o Assoc(A,V) = >, 4 jey wi; measures the total con-
nection of cluster A to all nodes in the graph.

This objective penalizes cluster splits that sever strong
internal connections, promoting well-separated and internally
cohesive clusters. In our context, this captures behavioral
divergence among attackers targeting different vulnerabilities,
protocols, or services.

b) Graph Construction and Embedding.: We constructed
the similarity graph using a Gaussian kernel:

2
W, :exp(_nm%;@n ) o
where x; and x; are multi-dimensional feature vectors (e.g.,
semantic, temporal, or numerical), and ¢ controls the neigh-
borhood sensitivity.

The unnormalized graph Laplacian L = D — W, where
D is the diagonal degree matrix, was transformed into the
normalized form:

Lyorm = D™Y2LD™1/2, 3)

We then extracted the first k eigenvectors of Loy to
produce spectral embeddings, which projected the data into
a lower-dimensional subspace suitable for clustering via k-
means.

C. Nystrom Approximation for Large-Scale Data

Given the high dimensionality and scale of our similarity
matrices, computing the full eigendecomposition of the graph
Laplacian was computationally infeasible. To address this, we
adopted the Nystrom approximation, which reduces complex-
ity by sampling a representative subset S of the data.

The similarity matrix was partitioned as:

Wss Wsse
W= % s
(Wsc,s WSG,S“)

where Ws s denotes similarities within the sampled subset,
and Wse s captures similarities between sampled and non-
sampled data points.

Using this decomposition, we approximated the spectral
embedding for the entire dataset via:

U=Wses -U-A"12

where U and A are the eigenvectors and eigenvalues derived
from Ws s. This approximation significantly reduced compu-
tational overhead while preserving clustering accuracy.

D. Co-Regularized Multi-View Spectral Clustering

In multi-dimensional cybersecurity datasets, distinct feature
types such as semantic embeddings, categorical encodings,
and numerical metrics offer complementary perspectives of
attacker behavior. To leverage these multiple modalities, we
adopted a co-regularized multi-view spectral clustering frame-
work.

Each feature subset was encoded into its own similarity
matrix W) and corresponding Laplacian L(*). We jointly
optimized the spectral embeddings across all m views via the
objective:

m

(v)
v }U:I v<w

where U(") denotes the spectral embedding for view v, and
A is a regularization term that encourages consensus across
views.



The first term minimizes the normalized cut in each feature
view independently, preserving intra-view structure, while the
second term enforces alignment across embeddings, facilitat-
ing unified clustering. This approach enabled us to integrate
semantically rich but structurally diverse representations into
a single, interpretable clustering space.

E. Single-View vs. Multi-View Clustering.

Understanding attacker behavior in cybersecurity datasets
necessitates clustering methods that account for the inher-
ently multi-dimensional nature of the data. While single-view
clustering approaches like those based solely on semantic,
numerical, or categorical features can uncover meaningful
patterns within individual feature spaces, they often fail to
capture relationships that span multiple dimensions.

In contrast, multi-view clustering integrates diverse fea-
ture representations into a unified analysis framework. This
enables the discovery of cross-dimensional correlations such
as semantic similarities that align with geographic patterns
or temporal signatures that would be invisible in isolation.
Our co-regularized spectral clustering approach leverages this
integration to enhance both the granularity and interpretability
of the resulting clusters. By aligning insights from distinct
views, we obtain a holistic understanding of adversarial tactics
and campaign structures in healthcare-specific attack traffic.

VI. CLUSTERING PERFORMANCE ANALYSIS

In this section, we present an evaluation of our cluster-
ing framework through sensitivity analysis, parameter op-
timization, and performance benchmarking across multiple
feature dimensions. We assess both single-view and multi-
view clustering schemes using established metrics to quantify
their effectiveness in capturing meaningful attacker behavior
patterns.

A. Parameter Sensitivity and Optimization.

Clustering performance in this framework depends critically
on two hyperparameters: the number of clusters K and the
regularization weight A. The parameter A mediates the trade-
off between view-specific fidelity and consensus alignment.
Smaller values favor independent view structure, while larger
values prioritize convergence toward a shared representation.

To determine optimal values, we conducted a grid search
over K and ), evaluating each setting using the silhouette
score. We observed that A = 1.0 yielded the best trade-
off between intra-view coherence and cross-view agreement,
and that ' = 8 maximized clustering quality, reflecting the
diversity of attacker strategies observed across the dataset.

To identify optimal clustering parameters, we conducted
a sensitivity analysis over a range of regularization weights
A €{0.1,0.5,1.0, 1.5, 2.0}, evaluating clustering performance
using the mean silhouette score. As shown in Figure [2] we ob-
served that A = 1.0 yielded the highest silhouette score (0.32),
indicating the best trade-off between intra-cluster cohesion and
inter-cluster separation across all feature views. This value was
therefore selected for the final clustering configuration.
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Fig. 2: Parameter tuning results for co-regularized multi-view
spectral clustering.

Beyond this point, further increases in A led to diminishing
returns or slight reductions in performance, likely due to over-
regularization, which can suppress important view-specific
patterns in attacker behavior. In addition to tuning A, we
explored different values for the number of clusters K. As
illustrated in Figure 2a] a value of K = 8 achieved the
highest silhouette score, suggesting that eight clusters best
captured the diversity and granularity of attacker strategies
observed in our deception environment. By evaluating the
influence of both A and K on clustering performance, we
ensured that the resulting consensus clusters were both robust
and interpretable. These empirical results provide a principled
basis for parameter selection and reinforce the value of the
co-regularized multi-view spectral clustering framework in
modeling complex attacker behavior.

B. Clustering Effectiveness Across Feature Views

We evaluated the performance of our clustering approaches
using two complementary metrics: Silhouette score and Ad-
justed Mutual Information (AMI). The Silhouette score mea-
sures both intra-cluster cohesion and inter-cluster separation,
with values ranging from —1 (poor clustering) to 1 (well-
separated and compact clusters). While high Silhouette scores
indicate strong structural quality within a single feature space,
they do not account for alignment across heterogeneous data
types. In contrast, AMI quantifies the agreement between
clustering outcomes, normalized against random chance, and
ranges from 0 (no agreement) to 1 (perfect agreement). In
particular, AMI is useful for comparing single-view and multi-
view clustering results to measure the added value of inte-
grating multiple feature perspectives. Table summarizes
the performance of our single-view and multi-view clustering
approaches, evaluated using the aforementioned metrics.

Single-View clustering results. Among the individual fea-
ture views, we found that clustering in the semantic space us-
ing ATTACK-BERT embeddings achieved the highest Silhou-
ette score (0.97), indicating well-defined and tightly grouped
semantic clusters. However, this approach was limited in cap-
turing behavioral diversity expressed through other dimensions
or features such as attack timing or IP-level engagement in-
tensity. Numerical feature clustering yielded a Silhouette score
of 0.88, successfully surfacing broad attack volume and trends
(e.g., protocol usage or geo-distribution), but lacking contex-
tual nuance. The clustering of temporal features achieved a
lower Silhouette score 0.64, highlighting diurnal patterns, but



failed to capture the volumetric aspects of attacks—critical to
understanding the coordination of attackers.

Multi-View clustering results. Our co-regularized spectral
clustering approach integrated semantic, temporal, numerical,
and categorical features into a unified representation. While
the resulting Silhouette score 0.75 was lower than the best
single-view score 0.97, this reduction reflects the increased
complexity and diversity of multi-modal data rather than
a degradation in cluster quality. Crucially, the multi-view
clustering achieved a substantially higher AMI compared to
any pair of single-view results, validating its ability to capture
cross-dimensional patterns and offer a more comprehensive
understanding of attacker behavior.

The AMI scores presented in Table [I1I| quantify the align-
ment between individual single-view clusterings and the final
multi-view consensus. Moderate AMI values (e.g., 0.4025
for semantic, 0.2821 for categorical) indicate that while each
single-view captures meaningful structure, none independently
reconstructs the comprehensive segmentation produced by
multi-view clustering. This reinforces the premise that attacker
behaviors are inherently multi-dimensional, and that capturing
their full complexity requires the integration of complementary
perspectives or dimensions—semantic, temporal, numerical,
and categorical.

TABLE III: Performance overview of single-view vs. multi-
view clustering.

Method Silhouette Score | AMI (vs. Multi-View)
Single-View (Semantic) 0.97 0.4025
Single-View (Categorical) 0.88 0.2821
Single-View (Temporal) 0.64 0.1957
Single-View (Numerical) 0.72 0.578
Multi-View (Final) 0.75 -

Visual Validation. We assessed the quality of the final
embeddings using cosine similarity heatmaps (Appendix Fig-
ure [B) and t-SNE visualizations (Figure [3). Both analyses
confirmed that semantically related attacks clustered together
in well-separated, interpretable groups. The t-SNE plot further
illustrates the distinctness of behavioral clusters within the
multi-view consensus space, with healthcare-targeted activity
forming compact and visually separable clusters from broader,
non-specific traffic. These results underscore the value of
domain-specific, multi-dimensional analysis in revealing nu-
anced targeting behaviors in deception-based environments.

Discoveries Enabled by Multi-View Clustering. To further
illustrate the advantage of our multi-view clustering approach,
we analyzed the patterns and correlations uncovered through
this integrated representation. Notably, multi-view clustering
exposed attacker behaviors that were obscured or fragmented
in single-view clustering analyses.

Temporal-semantic associations. Temporal features revealed
strong diurnal attack patterns that aligned with semantic clus-
ters targeting specific CVEs. For instance, attacks clustered
by payload similarity (e.g., SQLi or HL7 abuse) also showed
in Figure [I0) coordinated timing concentrated during early
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Fig. 3: t-SNE visualization of clusters, illustrating distinct
attack behaviors. The different colors show distinct clusters.

morning hours potentially indicating adversaries’ strategic
scheduling to avoid peak monitoring periods.

Numerical refinement of semantic clusters. Semantic clus-
ters were further refined by incorporating numerical attributes
such as IP activity frequency and session durations. This
allowed us to distinguish between botnet-driven campaigns,
characterized by high-frequency, short-duration bursts, low-
volume, persistent reconnaissance activities often indicative of
more targeted adversaries.

Cross-dimensional correlations. Multi-view clustering also
surfaced correlations between categorical and semantic at-
tributes, such as the geographic origin or ASN of source IPs
and their associated payload families. For example, certain
clusters tied to specific IP blocks were consistently associated
with exploit attempts targeting healthcare systems hosted on
particular cloud platforms. These coordinated behaviors span-
ning cloud infrastructure, region, and exploit vector—would
likely remain hidden without a multi-view analytical lens.

Overall, these insights validate the effectiveness of multi-
view clustering in resolving cross-dimensional conflicts and
producing a richer, more holistic representation of attacker
tactics. This approach contextualizes observed attack patterns
within real-world operational and regional dynamics, enabling
defenders to prioritize mitigation strategies based on informed
threat intelligence. In the following section (§VII), we present
the key behavioral insights extracted from the resultant clusters
in our dataset obtained at our deception networks.

VII. ANSWERING RESEARCH QUESTIONS

In the following, we answer our research questions (cf.
§I), grounded in the empirical findings of our clustering
framework.

A. RQI: Detecting Healthcare-Specific Attack Patterns and
Vulnerabilities.

Our analysis identified distinct healthcare-specific attack
behavior, particularly in terms of timing and persistence. As
shown in Figure [I0] several clusters such as cluster 6 and
cluster 7 exhibited clear diurnal patterns, peaking during early



morning hours. These bursts likely reflect automated scans
exploiting vulnerabilities in services like HL7 interfaces or
patient registration portals during operational downtimes.

In contrast, Cluster 2 demonstrated sustained, low-frequency
engagement over an extended period, consistent with targeted
reconnaissance attempts against healthcare endpoints. This
suggests a deliberate probing strategy, possibly aimed at
evading threshold-based detection systems.

In addition, Cluster 5 exhibited a distinct spike in activity
around 15:00 hours, as shown in Figure ] Such temporal
targeting may coincide with mid-shift transitions in healthcare-
environments periods when monitoring is less intensive pro-
viding adversaries with a tactical advantage. These patterns
diverge from those observed in Cluster 3, which maintained
steady activity during off-peak hours, consistent with stealthy
enumeration.

Clusters 4, 6, and 7 were dominated by attacks exploiting
healthcare endpoints, including HL7 interfaces and billing sys-
tems. These clusters demonstrated persistent activity through-
out the one-month deployment period, with a notable spike
observed on August 16-17 (Figure [)). This spike was linked
to a sophisticated attacker leveraging AWS infrastructure for
TLS-based attacks, targeting healthcare endpoints such as
billing portals. These findings underscore the critical need for
defenses tailored to detect and mitigate persistent threats in
healthcare systems.

B. RQ2: Regional and Protocol-Specific Variations in Attacker
Tactics.

To examine how attacker strategies vary by geography and
protocol, we analyzed both the regional origin and technical
characteristics of observed threat behaviors. Our clustering
analysis revealed significant correlations between geographical
attributes, protocol usage, and attacker tactics, underscoring
the necessity of contextual, region-aware deception strategies.

We first assessed the relationship between attacker geogra-
phy and behavioral clustering by conducting a Pearson Chi-
Square test on the country x cluster and ASN X cluster con-
tingency tables. The results showed a statistically significant
dependence between region and behavioral cluster:

o Country x Cluster: y%(3936) = 132,310, p < 0.001,

Cramér’s V = 0.41 (medium-large effect).
o ASN x Cluster: x?(12) = 77,248, p < 0.001, Cramér’s
V = 0.31 (medium effect).

These results suggest that geographical origin and network
ownership significantly shape the behavioral profiles of ob-
served attacks. Full contingency matrices are available in our
public artifact [24]]. For example, as shown in Figure [10]
Cluster 7 represented a bursty Mirai-like scanner with /32
sources distributed across the United States (29.5%), China
(21.2%), Australia (13.5%), and Brazil (10.9%). This global
mix mirrors recent Mirai-variant campaigns like Murdoc and
CatDDoS, reported by Qualys and Red Piranha [74], [75]], in
which attackers spun up ephemeral VPS nodes across these
regions. Notably, the strong Australian representation likely
reflects the proximity of our honeypots, which were co-located

in Sydney, suggesting a preference for region-local probing to
reduce latency.

In contrast, Cluster 2 was dominated by single-shot DNS
probes, often consisting of a few TXT/ANY queries before
disengagement. Its leading origin countries included China
(31.9%), Australia (15.2%), and Bulgaria (7.0%), consistent
with DNS-tunnel abuse previously documented by Akamai in
credential-stuffing operations [76]. Together, Clusters 2 and 7
illustrate distinct regional and protocol-specific behaviors (i)
a globally dispersed Mirai scanner and (ii) DNS abuse for
covert ex-filtration reinforcing the need for deception systems
capable of detecting diverse and transient threats.

C. RQ3: Malware and Hash Analysis Across Cloud Providers.

To further investigate protocol-specific and provider-specific
variations, we analyzed malware file hashes observed across
AWS, Azure, and OVH honeypots.

Figure [9] shows several malware hashes appeared across
multiple providers, indicating shared tool-sets used by attack-
ers targeting cloud-based healthcare systems. Certain hashes
(e.g., H60—H80) were heavily concentrated on AWS and OVH,
suggesting coordinated campaigns reusing malware families
across platforms. Other hashes were exclusive to a single
provider, highlighting targeted payload deployment strategies.

We statistically validated the relationship between file
hashes and cloud providers using a Chi-Square test: x?(206) =
4482.04, p < 0.001, Cramér’s V = 0.58, indicating a
moderate to strong association between malware variants and
cloud infrastructure hosting healthcare applications [[77]—[79].

Table presents the top five malware hashes per cloud
provider, including associated MITRE ATT&CK techniques
and assessed threat levels. Notably, hashes H62 and H63
appeared across all three providers and mapped to tactics such
as Command-and-Control (T1071) and Encrypted Channel
(T1573.001), underscoring the broad reach of some mal-
ware campaigns. Among them was a LockBit 3.0 variant—
an increasingly prevalent ransomware strain in healthcare—
alongside multiple Mirai variants commonly used for botnet
propagation and DDoS attacks.

These results demonstrate attackers’ tendency to reuse mal-
ware across cloud environments while adapting their tac-
tics to infrastructure-specific characteristics. Consequently,
deception-based monitoring systems must account for cross-
provider threat dynamics to maintain comprehensive coverage.

VIII. VALIDATION OF SYSTEM DESIGN REQUIREMENTS

In this section, we empirically validate our design re-
quirements for our deception network and demonstrate its
robustness as well as the operational viability in realistic cloud
environments.

A. Validation of Design Requirements

We validate the four design requirements (R1-R4), demon-
strating how our proposed deception network meets the key
objectives of scalability, healthcare specificity, real-time threat
detection, and stealth.
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Fig. 4: Temporal analysis across clusters revealing targeted
patterns. Daily trends show the spike on August 16-17.

Scalability (R1). To evaluate scalability, we monitored
resource utilization as the number of deployed applications
increased. Figure [5 reports CPU and RAM usage for 30 de-
ployed services, including resource-intensive components such
as T-Pot honeypots. As shown in Figure [5aj CPU utilization
scaled linearly with the number of active applications, with a
modest increase associated with T-Pot components. Similarly,
RAM usage followed a predictable linear trend (Figure [5b),
with dynamic resource allocation mitigating potential perfor-
mance bottlenecks. These results confirm that the architecture
supports scalable deployment across heterogeneous environ-
ments without compromising performance.
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Fig. 5: Validation of scalability via resource monitoring.
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Healthcare Specificity (R2). To validate domain relevance,
we compared captured attack traffic between our healthcare-
specific deception network and a generic honeypot deploy-
ment. The deception system recorded 73% more attacks
targeting healthcare-relevant endpoints such as HL7 brokers
and billing APIs, underscoring its effectiveness in attracting
domain-specific threats not observed in generic honeypots.

Real-Time Detection and Responsiveness (R3). We as-
sessed the system’s ability to deliver low-latency threat detec-
tion across the entire data pipeline. Based on 10,000 randomly
sampled network events, the average end-to-end processing
latency—from packet capture to visualization in the monitoring
dashboard-was 2.3 seconds, with 95% of events processed
within 5 seconds. For critical attack vectors, such as HL7
abuse and SQL injection, custom Suricata signatures triggered
alerts with an average delay of 1.8 seconds. These metrics
validate the system’s capability for real-time triage and timely
defensive response. Also, under peak conditions (1,500 events
/ minute), the system sustained sub-5-second latency without
data loss, demonstrating resilience under operational stress.

Stealth and Evasion Resistance (R4). To evaluate stealth-
iness, we used Shodan’s Honeyscore [42] to monitor the
detectability of our infrastructure over a one-month period.
As shown in Figure [6] our deception VMs consistently main-
tained a Honeyscore of 0, indicating successful evasion from
honeypot detection engines. In contrast, traditional honeypots
such as Cowrie [80] and Dionaea [81]] exhibited increased
Honeyscores over time. These findings confirm that our design
remains covert and resists fingerprinting by external scanning
engines.
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Fig. 6: Stealth validation using Shodan Honeyscore.

B. Ablation Study: Secure vs. Vulnerable Web Applications

To further evaluate attacker adaptability to system configu-
rations, we conducted an ablation study comparing attacker
behavior across two web applications, one secure and one
deliberately vulnerable, deployed in the same cloud environ-
ment (OVH). The secure application was containerized using
Docker on a hardened Ubuntu instance [82f, [83], served
via Gunicorn [84], and enforced security headers including
CSP, X-XSS-Protection, and X-Content-Type-Options [85],
[[86[]. Vulnerability assessments using OWASP ZAP [87] and
Nikto [88]] ensured the absence of known CVEs.

Key Findings. Table [[V] summarizes the results of our
statistical comparison across alert event types, protocols, ge-
olocation, and temporal attributes.

TABLE IV: Chi-square test results for the analyzed secure vs
vulnerable web applications.

Feature Chi-Square p-value Cramér’s V | Effect Size
Alert Types 222.70 4.53e—18 0.073 Weak
Event Types 586.57 8.24e—76 0.096 Weak
Application Protocols 214.74 1.35e—40 0.071 ‘Weak
Source IP Country 2013.57 0.0 0.220 Moderate
Source IP ASN 1873.29 0.0 0.212 Moderate
Day vs Night Interaction 1979.28 0.0 0.330 Moderate

o Event Types and Protocols. The vulnerable system attracted
a wider range of attack vectors, including increased DNS
tunneling and file manipulation attempts. HTTP and DNS
were disproportionately targeted, reflecting the attack sur-
face presented by healthcare-specific services.

o Geolocation and ASNs. Attackers interacting with the vul-
nerable system originated from a broader range of countries
and ASNs, including external cloud infrastructures (e.g.,



AWS, Google), whereas the secure application saw more
localized OVH-based traffic.

e Temporal Behavior. Night-time activity was significantly
higher on the vulnerable system (Cramér’s V = 0.33,
p < 0.001), suggesting that attackers deliberately exploit
reduced operational oversight during off-peak hours.

e IP Address Overlap. Only 5% of source IPs were common
across the two systems, indicating selective targeting rather
than indiscriminate scanning.

Healthcare-Specific vs. Generic Honeypots. To contrast
domain-specific deception with generic deployments, we com-
pared our healthcare-targeted web apps with a co-located
Cowrie honeypot. Statistical analysis of destination port distri-
bution yielded x?(14) = 3,897,878, p < 10~*, and Cramér’s
V' = 0.60, indicating a large effect. Healthcare traffic targeted
endpoints such as /openmrs/ws/rest/vl/patient and
/openemr/interface/billing/, with Suricata flag-
ging healthcare CVEs like CVE-2023-43208 and CVE-2022-
31496. These threats were absent from the Cowrie instance,
highlighting the necessity of healthcare-specific deception to
surface relevant attack vectors.

Summary. Our ablation analysis shows the value of deploy-
ing deception networks that emulate healthcare-specific infras-
tructure. By capturing real-world attacker interactions, such
setups reveal targeted exploitation patterns across protocols
and configurations. These insights inform patch prioritization,
support proactive defenses, and strengthen monitoring during
high-risk periods, enhancing resilience in critical environments
like healthcare.

IX. RECOMMENDATIONS

To enhance the practical utility of insights from our health-
care deception network, we offer the following recommenda-
tions aligned with current capabilities and future development.

Deploying Workflow-Specific Decoys and Prioritizing
Patching. We recommend deploying decoy HL7 interfaces to
attract adversaries targeting EHR workflows without exposing
real patient data. Given HL7’s plaintext transmission and
frequent targeting, it presents an ideal deception surface. These
decoys produced actionable findings that can guide patching
priorities for production systems in the same application class.
Integrate telemetry from attacker interactions into vulnerability
management systems. Persistent targeting of specific end-
points e.g., billing portals or known CVEs (e.g., SQLi, XSS)
should trigger higher remediation priority. Our ablation study
( confirms deliberate, targeted behavior, underscoring
the value of data-driven patch management.

Enhancing Real-time Threat Analysis and Intelligence
Integration. We recommend ensuring that alerts and events
generated by the deception network are formatted using stan-
dard schemas (e.g., JSON, CEF, Syslog) for smooth integra-
tion with SIEM platforms such as Splunk and Wazuh. This
compatibility allows for real-time correlation with broader
threat telemetry, improving situational awareness. Our system
maintains sub-5-second latency for log processing even under

sustained attack volumes, supporting timely triage and threat
response.

Additionally, we suggest incorporating nuanced patterns
uncovered during the study such as protocol-specific, regional,
and temporal attack variations into threat detection strate-
gies. For example, recognizing peak scanning activity during
specific hours (e.g., early mornings or afternoon lulls) can
help optimize resource allocation for monitoring (see § [VII).
Observing consistent malware signatures (e.g., LockBit 3.0)
across cloud environments further enables targeted defensive
postures.

Strengthening Deception Resilience and Stealth. To pre-
serve deception effectiveness, we recommend employing dy-
namic data rotation and regularly validating honeypots against
reconnaissance tools beyond Shodan’s Honeyscore. This helps
maintain stealth and prevents early detection by sophisticated
adversaries. Future enhancements should include live traffic
emulation and broader stealth evaluations to simulate realistic
service behavior and evade advanced scanning techniques. We
also emphasize the importance of outbound traffic control from
deception environments. Implementing WAFs and restricting
high-risk protocols such as UDP can prevent abuse—such as
DNS amplification or DDoS attacks. Continuous integrity
monitoring via tools like Wazuh ensures honeypots remain
uncompromised and operationally safe.

Operationalization and Broader Application. Future
work will focus on analyzing real-world deployments to assess
detection failures, false positives, and response effectiveness,
enabling iterative improvements. We also propose extending
this approach to other critical sectors like finance and energy,
which present distinct threat models. To support attribution,
incorporating a control group of generic honeypots can help
isolate healthcare-specific targeting patterns.

Ensuing compliance and proactive risk management.
By logging and simulating attempted breaches on healthcare
services, our system supports continuous monitoring mandates
under frameworks such as HIPAA and ISO 27001. These logs
provide tangible evidence of proactive risk management and
can streamline audit preparation.

X. CONCLUSION AND FUTURE WORK

We introduced a healthcare-focused deception network that
reveals multi-dimensional attack patterns regional, protocol-
specific, and temporal through co-regularized spectral cluster-
ing. The results confirmed that attackers deliberately targeted
healthcare systems using protocols like HTTP, DNS, and TLS.
Our findings provided actionable insights for deploying decep-
tion networks and prioritizing patching efforts based on real-
world attacker behavior. The work established a foundation
for integrating deception into healthcare security frameworks.

Future research may focus on adaptive deception networks
that respond to real-time threat intelligence, as well as privacy-
preserving analysis of encrypted traffic (e.g., TLS). Expanding
to other critical sectors, incorporating protocols like FHIR,
and analyzing real-world deployment incidents will be key to
refining strategies and improving resilience.
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APPENDIX

Figure [I] shows the architecture of our deception network.
In the following, we provide a detailed summary of the
vulnerable healthcare web applications used in this study,
which were specifically selected based on their documented
security weaknesses, such as SQL injection, XSS, and Path
Traversal vulnerabilities. These applications, including Elec-
tronic Medical Records (EMR) systems and Hospital Manage-
ment Platforms (HMS), were sourced from publicly available
repositories and enriched with synthetic patient data to emulate
real-world healthcare environments.

Table [V] summarizes the key attributes of the selected ap-
plications, including their category, versions, associated CVEs,
CWE references, and information on whether the vulnerabil-
ities have been exploited or patched. The data gathered from
these applications informed the analysis of attacker behavior
in healthcare-specific cloud environments, as discussed in the
main body of this paper.

Additionally, Figures and visualize findings from
our deception-based threat detection network showing the
most frequently targeted credential pairs by unique IPs and
engagement counts.

This subsection provides explanations of the key technical
tools and standards referenced in this study. These definitions
and examples are included to assist readers unfamiliar with
domain-specific terminology.
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TABLE V: Summary of

selected vulnerable healthcare web applications (cf. -|

Software Category Version CVE(s) CWE(s) Exploit Patch
Clinic’s Patient Management | EMR 1&2 CVE-2022-3120, CVE-2022- | CWE-89 (SQL Injection), | Yes No
System Project [89] 3122, CVE-2022-36242 CWE-79 (XSS)
Covid 19 Testing Manage- | Laboratory Sys- 1 CVE-2023-1300 CWE-89 (SQL Injection) Yes No
ment System Project [90] tem
Doctor Appointment System | Patient Appoint- | 1 CVE-2021-27314, CVE- | CWE-22 (Path Traversal) Yes No
Project [91] ment System 2021-27315, CVE-2021-
27316
Edoc-Doctor-Appointment- Patient Appoint- | 1.0.1 CVE-2022-36543, CVE- | CWE-79 (XSS) Yes No
System Project [92] ment System 2022-36544, CVE-2022-
36545, CVE-2022-36546
Electronic Medical Records | EMR 1 CVE-2022-2676, CVE-2022- | CWE-89 (SQL Injection) Yes No
System Project [93] 2693, CVE-2023-1151
Free Hospital Management | HMS 1 CVE-2023-4440, CVE-2023- | CWE-89 (SQL Injection), | Yes No
System For Small Practices 4441, CVE-2023-4442, CVE- | CWE-79 (XSS)
Project [94] 2023-4443, CVE-2023-4444,
CVE-2023-5587
Health Center Patient Record | HMS 1 CVE-2023-1253 CWE-89 (SQL Injection) Yes No
Management System [95]
HHIMS Project [96] HMS 2.1 CVE-2022-3956 CWE-89 (SQL Injection) Yes No
HMS Project [97] HMS 1 CVE-2022-23365, CVE- | CWE-89 (SQL Injection) Yes No
2022-23366
Hospital Information System | HMS N/A CVE-2022-36669 CWE-89 (SQL Injection) Yes No
Project [98]
Hospital Management Center | HMS N/A CVE-2022-4012, CVE-2022- | CWE-89 (SQL Injection), | Yes No
Project [99] 4013 CWE-79 (XSS)
Mayurik Free Hospital Man- | HMS 1 CVE-2023-4179, CVE-2023- | CWE-89 (SQL Injection), | Yes No
agement System For Small 4180, CVE-2023-4181, CVE- | CWE-79 (XSS)
Practices [100] 2023-4185
Medical Certificate Generator | Other 1 CVE-2023-0706, CVE-2023- | CWE-89 (SQL Injection), | Yes No
App Project [101] 0707, CVE-2023-0774, CVE- | CWE-79 (XSS)
2023-1566
Nosh Chartingsystem Project | Patient Appoint- | 1 CVE-2023-24610 CWE-434 (Unrestricted file | Yes No
[102] ment System upload)
" Hospital Management Sys- | HMS 1 CVE-2021-38754, CVE- | CWE-89 (SQL Injection), | Yes No
tem Project [[103] 2023-43909, CVE-2021- | CWE-79 (XSS)
44095
Hospital’s Patient Records | EMR 1 CVE-2022-22854, CVE- | CWE-89 (SQL Injection) Yes No
Management System Project 2022-24232, CVE-2022-
[104] 25003
" Librehealth EHR [105] EMR 2.0.0 CVE-2020-11436, CVE- | CWE-89 (SQL Injection), | Yes No
2020-11438, CVE-2020- | CWE-79 (XSS), CWE-22
11439 (Path Traversal)
Online Doctor Appointment | Patient 1 CVE-2020-29168, CVE- | CWE-89 (SQL Injection), | Yes No
Booking System Php And | Appointment 2020-29283 CWE-79 (XSS)
Mysql System [106]
Online Health Care System | HMS 1 CVE-2022-46471 CWE-89 (SQL Injection) Yes No
Project [107]
Online Hospital Management | HMS N/A CVE-2023-37069 CWE-89 (SQL Injection) Yes No
System Project [108]
Patient Appointment Sched- | Patient Appoint- | N/A CVE-2021-41660 CWE-89 (SQL Injection) Yes No
uler System Project [[109] ment System
Open-Emr [110] EMR N/A CVE-2020-19364, CVE- | CWE-434 (Unrestricted file | Yes No
2019-8371 upload), CWE-89 (SQL In-
jection), CWE-79 (XSS)
Openclinic Ga Project [111] HMS 5.173.3 CVE-2020-27229, CVE- | CWE-89 (SQL Injection), | Yes No
2020-27230, CVE-2020- | CWE-79 (XSS)
27231
Openclinic Project [[112] HMS 0.8.2 CVE-2020-28937, CVE- | CWE-89 (SQL Injection) Yes No
2020-28939
Openmrs [113] EMR 1.6, CVE-2021-43094, CVE- | CWE-79 (XSS) Yes No
2.2.0, 2022-23612
2.3.0
Pharmacy Medical Store And | Telemedicine N/A CVE-2020-24862 CWE-89 (SQL Injection) Yes No
Sale Point Project [114]
Pharmacy Point Of Sale Sys- | Telemedicine N/A CVE-2021-41676 CWE-89 (SQL Injection) Yes No
tem Project [[115]
Projectworlds Hospital Man- | HMS 1 CVE-2021-43628, CVE- | CWE-89 (SQL Injection), | Yes No
agement System In Php [116] 2021-43629 CWE-79 (XSS)
Remote Clinic [117] Telemedicine N/A CVE-2023-33481 CWE-89 (SQL Injection) Yes Yes
Simple Doctor’s | Patient Appoint- 1 CVE-2022-28568 CWE-89 (SQL Injection) Yes No
Appointment System Project | ment System
[118]
" Phpgurukul Hospital Man- | HMS 1,4 CVE-2023-7172, CVE-2020- | CWE-79 (XSS) Yes No

agement System [119]

22164, CVE-2020-22165
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Fig. 7: Analysis of top credential pairs: (a) by Unique IPs and
(b) by engagement count.

HL7 messaging protocol [6]. It is an internationally recog-
nized set of standards for the exchange of clinical and adminis-
trative data in healthcare systems. HL7 defines structured mes-
sages like Admission-Discharge-Transfer (ADT) and Order
Entry Message (ORM) to facilitate interoperability between
healthcare applications. For instance, an ADT message is
shown in Listing [T} This message communicates that a patient
named John Doe was admitted to Hospital A on January 20,
2025.

International Classification of Diseases (ICD-10). The
International Classification of Diseases (ICD-10) is a globally
accepted system for coding diagnoses and health conditions.
For example, ICD-10 code E11 . 9 represents “Type 2 diabetes
mellitus without complications”. These codes streamline doc-
umentation and facilitate healthcare analytics.

National Drug Code (NDC). The National Drug Code
(NDC) is a unique identifier for medications in the United
States, maintained by the Food and Drug Administration
(FDA). An example is 0781-1842-10, which represents a
bottle of 40 mg Furosemide tablets (100 count). NDC codes
ensure precise identification of pharmaceuticals.

Wazuh. It is an open-source security platform that inte-
grates threat detection, compliance management, and integrity
monitoring. It collects logs from distributed sources and maps
them to the MITRE ATT&CK framework, providing insights
into tactics, techniques, and procedures (TTPs). In this study,
Wazuh identified activities like brute-force login attempts

(T1110) and data exfiltration attempts.

Suricata. It is a high-performance, open-source network
intrusion detection and prevention system (NIDS/IPS). It
operates at multiple layers of the network stack and can
process custom rule sets. For example, a rule targeting DNS
tunneling might detect abnormal packet flows indicative of
data exfiltration.

Logstash. As a part of the ELK stack, it is a powerful
tool for collecting, parsing, and enriching log data. It supports
input from various sources and can transform data into a
standardized format for downstream analysis. For instance, it
was used in this study to aggregate logs from Wazuh and
Suricata while adding GeolP and CVE enrichment.

Kibana. It is an open-source visualization tool in the ELK
stack that allows users to explore, visualize, and interact
with data stored in Elasticsearch. Dashboards were created
to visualize attack trends, such as SQL injection attempts or
geographic distributions of malicious activity.

T-Pot Honeypot Framework. T-Pot is a multi-honeypot
framework developed by Deutsche Telekom. It combines sev-
eral open-source honeypot technologies (e.g., Cowrie, Dion-
aea) into a containerized environment. It includes a native ELK
stack for log management and is tailored for high-interaction
deployments.

Canary Tokens. These are lightweight intrusion detection
mechanisms embedded in sensitive resources (e.g., URLs,
files). When accessed, they generate alerts, providing insights
into unauthorized reconnaissance activities. For example, em-
bedding a token in a fake patient record URL helped detect
malicious scanning.

MITRE ATT&CK Framework. It is a curated knowledge
base of adversary tactics, techniques, and procedures (TTPs).
For example, T1110 refers to brute force attacks. This frame-
work enables standardized threat classification and supports
structured defense strategies.

To validate the similarity matrices generated during the pre-
processing step of our analysis, we provide the following
heatmaps for four key feature groups: semantic, categorical,
numerical, and temporal. Each heatmap presents a 100x 100
subset of the corresponding similarity matrix, offering a clear
representation of the relationship between data points across
different feature dimensions. These visualizations help assess
the consistency and alignment of the similarity computations
with the intended feature attributes.

The purpose and observations of the heatmaps are detailed
below:

A. Purpose of the Heatmaps

These heatmaps serve a dual purpose:

« Validation. They confirm that the similarity computations
align with the expected feature characteristics, ensuring
the preprocessing steps are accurate and meaningful.

« Visualization. They provide insights into the structure
and density of the data, highlighting potential clusters
and relationships even before clustering is applied.
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Fig. 8: Heatmaps representing similarity matrices for different feature groups: semantic, categorical, numerical, and temporal.
Each heatmap uses a 100x 100 subset of the corresponding similarity matrix (see §VI-B|for details).

B. Observations

o The semantic similarity heatmap reveals well-defined
alignments, which are essential for clustering semanti-
cally related behaviors.

o The categorical and numerical heatmaps display dis-
tinct diagonal patterns, indicating strong intra-category
relationships and coherent numerical groupings.

o The temporal similarity heatmap captures periodic
patterns that align with the diurnal attack trends discussed

in the main analysis.
These heatmaps not only support the methodological rigor
of our approach but also enhance the interpretability of the
subsequent clustering and analysis steps.

C. Temporal Analysis.

As discussed in Section [VII] here we present Figure [I0]
to show the temporal behavior of attackers targeting our
deception network.
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Fig. 9: Timeline of unique file hashes across cloud providers (see @)
TABLE VI: Top five malware file hashes observed per cloud provider (AWS, Azure, OVH), including their occurrence count,
associated MITRE ATT&CK techniques, and threat level classifications. This highlights coordinated multi-cloud campaigns
and provider-specific targeting patterns. (See §VII-C| for detailed analysis.)

File Hash Cloud Provider Occurrence Count | Malicious Count | MITRE ATT&CK IDs Threat Level

HS8 Azure 50 15.0 T1573, T1071 Informative

H13 Azure 50 28.0 None None
T1078, T1059.001,

H7 Azure 47 64.0 T1078.002, T1547.001, Informative
T1543.003
T1014, T1543, T1564,

HI2 Azure 42 36.0 T1082, T1036, T1083, None
T1027

H9 Azure 42 38.0 T1573.001 Informative

H62 AWS 3976 28.0 T1071 Malicious

T1573.001, T1573,

H63 AWS 2099 0.0 T1105, T1071 Malicious
HS AWS 50 15.0 T1573, T1071 Informative
H13 AWS 50 28.0 None None
T1078, T1059.001,
H7 AWS 47 64.0 T1078.002, T1547.001, Informative
T1543.003
H62 OVH 3976 28.0 T1071 Malicious
T1573.001, T1573, ..
H63 OVH 2099 0.0 T1105, TI071 Malicious
HS8 OVH 50 15.0 T1573, T1071 Informative
H13 OVH 50 28.0 None None
T1078, T1059.001,
H7 OVH 47 64.0 T1078.002, T1547.001, Informative
T1543.003
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Fig. 10: Hour-of-day activity for each cluster (cf. §VII-A).
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