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Abstract. Contemporary mobile applications (apps) are designed to
track, use, and share users’ data, often without their consent, which re-
sults in potential privacy and transparency issues. To investigate whether
mobile apps have always been (non-)transparent regarding how they col-
lect information about users, we perform a longitudinal analysis of the
historical versions of 268 Android apps. These apps comprise 5,240 app
releases or versions between 2008 and 2016. We detect inconsistencies
between apps’ behaviors and the stated use of data collection in pri-
vacy policies to reveal compliance issues. We utilize machine learning
techniques to classify the privacy policy text and identify the purported
practices that collect and/or share users’ personal information, such as
phone numbers and email addresses. We then uncover the data leaks
of an app through static and dynamic analysis. Over time, our results
show a steady increase in the number of apps’ data collection practices
that are undisclosed in the privacy policies. This behavior is particularly
troubling since privacy policy is the primary tool for describing the app’s
privacy protection practices. We find that newer versions of the apps are
likely to be more non-compliant than their preceding versions. The dis-
crepancies between the purported and the actual data practices show
that privacy policies are often incoherent with the apps’ behaviors, thus
defying the ‘notice and choice’ principle when users install apps.

Keywords: Data privacy, mobile applications, privacy policy, static analysis,
dynamic analysis

1 Introduction

“Privacy is the claim of individuals, groups, or institutions to determine for
themselves when, how, and to what extent information about them is communi-
cated to others.”3 Between October 2012 and February 2013, Snapchat’s privacy
policy said, “We do not ask for, track, or access any location-specific information

3 Alan Westin, Privacy and Freedom, 1967.



from your device at any time while you are using the Snapchat application” [1].
However, Snapchat did the opposite by collecting and sharing users’ geo-location
information (Wi-Fi and cell-based location data) to its analytics tracking ser-
vice provider. Federal Trade Commission (FTC) of the United States initiated
an investigation, and in December 2014 ordered Snapchat to implement a com-
prehensive privacy program addressing risks to users’ privacy [2].

In February 2019, FTC fined TikTok 5.7 million USD for illegally collect-
ing children’s personal data [3]. Between 2019-20, in the United States, several
federal lawsuits against TikTok were filed citing the harvesting of users’ (includ-
ing children’s) personal data without consent. In July 2020, these lawsuits were
incorporated into a single class-action lawsuit. In February 2021, a settlement
was reached where TikTok agreed to pay 92 million USD and stop the collection
of users’ bio-metric and location data [4]. Currently, TikTok is facing a privacy
lawsuit in the United Kingdom for violating child privacy laws in the collection
of personal information and sharing it with third-parties [5].

The examples of Snapchat, TikTok, and various other apps [6] highlight that
online service providers frequently do not comply with their privacy policies,
despite the presence of regulations related to the disclosure of privacy prac-
tices. These regulations include the California Online Privacy Protection Act
(CalOPPA) [7], California Consumer Privacy Act (CCPA) [8], and Children’s
Online Privacy Protection Act (COPPA) [9] in the US, General Data Protection
Regulation (GDPR) in the EU [10], Data Protection Act in the UK [11], and the
Privacy Act in Australia [12]. Although there are limitations to privacy policies
(such as they are not often read [13], take a long time to read [14], and are hard
to comprehend [15]), privacy policies remain the legally recognized standard of
protecting privacy based on the “notice and choice” principle [16]. This princi-
ple gives users a notice of the data practices performed by the app (or service)
before that data is collected. The users then have the choice to opt-in (i.e., give
permission) or opt-out (i.e., decline permission) of giving access to their details.

Several studies have shown the behavior of contemporary apps to be non-
compliant with the stated disclosures in their privacy policies [17–23]. Given
that the compliance landscape is continuously evolving, we aim to determine
whether the non-compliant behavior has changed with time. In this study, we
investigate the compliance of Android apps with their privacy policies over time,
ranging from 2008 and 2016. We detect and analyze the personally identifiable
information (PII) leaked by an app, disregarding the practices made public by
the publisher in the app’s privacy policy. We leverage machine learning (ML)
techniques to classify the text of apps’ privacy policies and identify the purported
practices that collect and/or share data (e.g., phone number). We then uncover
the actual data leaks of an app through static analysis (examining the app code)
and dynamic analysis (inspecting the network traffic generated by the app). While
relying on existing techniques, this study is, to our knowledge, the first effort to
integrate app and privacy policy text analysis to measure how the apps’ privacy
conducts have evolved.

The main contributions of this paper are as follows:



– We identify the data collection practices (privacy practices) disclosed in 3,151
privacy policies (obtained from 2012 to 2019) of 4054 apps using machine
learning classifiers. We find that 2,422 privacy policies from 327 different
apps disclose at least one of these practices, with an average of 7.86 per
policy (§3.1).

– We analyze historical versions of popular apps from 2008 to 2016, based
on the union of leaks observed via static and dynamic analysis. The results
show an increase in the average number of leaks per app version over time.
Surprisingly, the average number of leaks to third-parties rose from 2.7 in
2011 to 4.43 in 2016 (§3.2).

– Our analysis reveals that the compliance of apps with their privacy policy is
steadily decreasing from 33.16% in 2011 to 10.76% in 2016. Also, newer ver-
sions of the apps are performing more privacy policy violations than their
immediately preceding version. For instance, 9.2% of the app versions re-
leased in 2016 show an increase in first-party violations compared to their
preceding version, whereas only 2.5% show a decrease (§3.3).

The rest of the paper is organized as follows: In Section 2, we describe our
data collection approach and present our analysis methodology. In Section 3, we
discuss the findings of our analysis. Section 6 reviews the related work, and we
conclude and discuss future research directions in Section 7.

2 Dataset and Methodology

Figure 1 depicts our methodology. In the following, we explain the steps involved
in our data collection and analysis.

2.1 Dataset

Mobile Apps We select Android apps that are (i) popular, (ii) have multiple
versions, (iii) are susceptible to network traffic interception, and (iv) have pri-
vacy policy in the app’s home-page on Google Play. The popular apps we selected
were either in the top 600 free apps based on the Google Play Store ranking,
or in the top 50 in each app category, as of 10 Jan 2017. We discard apps with
less than four versions and apps for which we can not intercept TLS (Transport
Layer Security) traffic (e.g., apps with non-native Android TLS libraries such as
Twitter, Dropbox). We also discard apps that do not contain privacy policy on
their home-page at Google Play. For the compliance analysis, we collect 5,240
unique APKs that correspond to 268 apps.

We download the selected apps and their previous versions from an unoffi-
cial Google Play API [24] that requires the package name and version code to
download an APK. We infer the release date of the package from the last mod-
ification time of the files inside the APK (such as AndroidManifest.xml and
META-INF/MANIFEST.MF). If the date is incorrect (e.g., before 2008), we refer to
third-party services (appcensus.io, apkpure.com) for inferring the release dates.
4 see §A for clarification on different number of apps reported.
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Fig. 1. Overview of our approach. We perform compliance analysis after taking the
union of personal identifiable information (PII) leaks detected in both the static and
dynamic analysis.

Privacy Policies Google requires Android app developers to disclose the col-
lection and sharing of users’ data [25]. Accordingly, on Google Play Store, each
application must provide a link to the privacy policy on its home-page.

For the most updated version of each app, first, we ac-
cess the URL of the privacy policy from the app’s home-page
(https://play.google.com/store/apps/details?id=[pname] followed by the
package name, i.e., pname), and then scrape privacy policy link to extract the
privacy policy text.

To obtain the privacy policies of the previous versions of the same app, we
leverage the Internet Archive’s Wayback Machine [26], which gives us access
to previous snapshots of the app’s privacy policy page. Since 1996, the Way-
back Machine has archived full websites, including JavaScript codes, style sheets,
and any multimedia resources that it can identify statically from the website’s
content. We refer to the single capture of a web-page as a snapshot. Wayback
Machine mirrors past snapshots of these websites on its servers. Note that we
cannot extract the privacy policy content if the URL obtained from the app’s
home-page refers to an invalid URL, or if the privacy policy is not found on that
URL, or if the privacy policy web-page contains another link that refers to the
privacy policy text. Also, the Wayback Machine poses some challenges (such as
web-page redirect or varied frequency of archived snapshots) in capturing a spe-



cific web-page [27]. This results in a miss to capture the privacy policy snapshot
in that three-month window, and we move to the next three-month window.

There are instances where a single privacy policy is mapped to multiple app
versions. This is because privacy policies only became mandatory on Google
Play in 2018 [28]. Therefore, a privacy policy residing on a given URL today
may not have been residing on the same URL a few years ago. If the Wayback
Machine does not archive a policy’s web-page, then the current policy’s web-
page (obtained in 2019) is mapped to all the app releases. Furthermore, we are
unable to obtain policy web-pages before 2012. Therefore, the app releases prior
to 2012 have a high difference in time with the privacy policy date. It may also
be possible that the source code of an app is modified when releasing a new
version however comes with the old privacy policy.

We use Memento API [29] to capture snapshots at intervals of three months
and obtain multiple privacy policies for the same app. Memento API provides
the nearest time-stamp for the archived snapshot of a website from the date
provided. By comparing the app version’s release date with the snapshot dates
of the privacy policy web-page, we obtain the snapshot immediately after the app
version’s release date. For example, if an app released versions in Feb’16, Aug’16
and Dec’16, and the app’s privacy policy snapshots are from Jan’16, Jul’16, and
Jan’17, then the Feb’16 app version will be assigned the Jul’16 privacy policy.
Similarly, Aug’16 and Dec’16 app versions will be assigned the Jan’17 privacy
policy snapshot.

2.2 Privacy Policy Analysis

We characterize the identification of privacy practices (i.e., app behaviors that
leak PII) from the app’s privacy policy as a supervised classification problem.
We initially pre-process the privacy policy text and then apply machine-learning
classifiers to predict the privacy practices.

Data Pre-processing: From the privacy policy URL, we obtain the text of
the privacy policy by scraping the < body > tag of the HTML page. Within
the < body > tag, we discard unnecessary content nested in other tags (such as
< script >, < style >, < meta >, and < noscript >). Some archived pages in
Wayback Machine have text in a particular format (for example, beginning with
“success” and ending with “TIMESTAMPS”) prefixed to the original text. We
discard all prefix text prior to the analysis of privacy policy text.

Next, we convert the privacy policy text into segments (or paragraphs) by en-
suring that a single paragraph does not contain less than fifty characters, except
if it is the last paragraph of the privacy policy. Previous work has shown that
practices are better captured from the policy text if the text is broken down into
segments [30, 31]. If a text segment (other than the last segment) has less than
fifty characters, it is likely to be the heading of the next paragraph; therefore,
we merge it with the next text segment. We also combine two adjacent text seg-
ments if their combined length is less than 250 characters. After converting the
text into segments, we lowercase all segments, and normalize whitespaces and
apostrophes (for example, we change words like haven’t and don’t to have not



and do not respectively). We finally discard non-alpha and non-ASCII characters
and also remove single-character words from the text segments.

Finally, we extract vectors for the segment text by taking the union of TF-
IDF [32] vector and a vector of hand-crafted features obtained from [33]. We
choose TF-IDF because it is the most popular weighting scheme in the domain
of text mining and information retrieval [34, 35]. We create the TF-IDF vector
using TfidfVectorizer [36] with English stop words from the Natural Language
Toolkit (NLTK) corpus. The vector of hand-crafted features comprises boolean
values corresponding to the presence or absence of custom strings in the training
dataset. For example, we use the strings cookie, web beacon, and tracking

pixel to indicate the disclosure of Identifier Cookie practice.

Training Data: To build a training dataset, we leverage the work of Zimmeck
et al. [22] where they created a privacy policy corpus of 350 most popular mobile
apps (APP-350 corpus [37]). All the 350 apps selected have more than 5 million
downloads. Legal experts annotated the privacy policies to identify the privacy
practices mentioned in the policy text. The annotated label on a privacy policy
comprises three parts (or tiers): (i) a general or specific practice (twenty-eight
unique practices in total), (ii) whether that practice has been performed or not,
and (iii) whether that practice is associated with first or third-party. In first-
party practice, the PII is accessed by the code of the app itself, and in third-
party practice, the PII is accessed by third-party libraries (such as analytics,
advertisements, or social networks). The annotation labels are assigned to the
segments (or paragraphs) rather than the whole policy text. The union of labels
for the segments provides the disclosure in the whole policy text. We randomly
split the APP-350 corpus into training data (n=250) and test data (n=100).

Classification Problem: For a given privacy policy, we aim to detect the dis-
closure of privacy practices. A privacy practice comprises three components: (i)
type of PII (e.g., Contact), (ii) negation or approval of the practice being per-
formed (Performed or Not Performed), and (iii) party (1stParty or 3rdParty).
We characterize this task as a multi-label text classification problem.

We sub-divide the classification task to identify: (i) PII type, (ii) procedure
i.e., practice has been performed or not, and (iii) first-party or third-party. If
we make classifier for each unique combination, we will require 112 classifiers for
each combination of PII type, perform/not perform, and first/third-party. The
limitation of this approach is that the training samples for most of these combi-
nations are limited (less than 100). Therefore, after sub-dividing the classifica-
tion problem, we only require thirty-two classifiers (twenty-eight for unique PII
types, two for procedure (Performed or Not Performed), and two for parties).
For example, Contact Email Address Performed 3rdParty will be assigned to
a text segment for which Contact Email Address, Performed, and 3rdParty

classifiers all return a positive value for that text segment. We consider a policy
text discloses a privacy practice if at least one segment in the text returns posi-
tive values for at least one PII type classifier, Performed classifier, and 1stParty

and/or 3rdParty classifiers.



We utilize One-vs-the-rest (OvR) [38] classification strategy and test our
approach with the Multinomial Naive Bayes [39], Logistic Regression [40], and
Linear Support Vector Classifiers (SVC) [41]. We select Linear SVC as our clas-
sifier for unseen policies’ text due to its superior performance on the test dataset
(n=100). In particular, the average F1 score (%) for all classifiers with Multi-
nomial Naive Bayes and Logistic Regression is 17.37% and 67.54%, respectively,
while for Linear SVC, we obtain an average F1 score of 73.75%. Table 7 shows
the performance of our classifiers. Our approach achieves high accuracy, ranging
from 91.16% to 100% for all the classifiers.

2.3 Static Analysis

Resources of an app that are required to run it on a device are bundled to-
gether in an Android Package Kit (APK). In the static analysis of mobile
apps, after downloading the APK, we decompile it using Apktool [42]. De-
compiling APK yields the assets (including byte-code in the DEX format) and
metadata (in the XML format). After disassembling .dex files into smali for-
mat, we extract the API calls. We also extract the app permissions from the
AndroidManifest.xml file. If an app needs access to a resource outside its sand-
box, then it will request the appropriate permission in the AndroidManifest.xml
file. API calls that do not have the required permissions are not executed, for
example, the API android.telephony.TelephonyManager.getImei requires
READ PRIVILEGED PHONE STATE permission to retrieve the IMEI (Inter-
national Mobile Equipment Identity). In particular, we utilize the Android APIs
from [22] and obtain their required permissions from Android API reference [43].
If we observe an API call for a particular privacy practice in the source code, we
check if the required permissions are also requested in the app manifest file. We
identify that practice is being performed (for a given privacy practice) if both
the relevant API call(s) and the required permission(s) exist.

We distinguish the API function calls into system calls, first-party calls, and
third-party calls. Calls made by the Android class are classified as system calls.
We differentiate between first and third-party calls by comparing the classes
based on Java’s reversed internet domain naming convention [44]. The .smali

file’s package name is matched with the app’s package name. If (i) both top and
second-level domains match , or (ii) the .smali file’s package looks obfuscated
(e.g., b/a/y.smali), we classify the API call as first-party. Otherwise, it is clas-
sified as a third-party call. In our analysis, we only consider the API calls made
by first or third-parties.

Besides obtaining the third-party “domains” invoking the API calls, we need
to extract the corresponding company names in order to check if these appear in
the privacy policy text or not. Since a company can acquire multiple domains, we
leverage the previous work of Binns et al. [45] in the domain-company ownership.
For example, if the API call is from adsense.com then we check for the existence
of terms “adsense”, “google” and “alphabet” in the privacy policy text. If we
find any of the terms in the policy text, we consider the third-party domain as
disclosed.



2.4 Dynamic Analysis

A limitation of static analysis is its inability to capture dynamically loaded
code and analyze obfuscated function calls [46]. To overcome this limitation,
following the work by Ren et al. [47], we complement our approach with the
dynamic analysis of apps. We employ ReCon [48], a transparency control tool
that relies on the machine-learning classification to identify leaks of privacy-
related information in the mobile-app traffic [49]. In particular, using a public
dataset of annotated traffic flows [50], we train a machine-learning classifier
(C4.5 decision tree) to predict whether traffic flow is leaking PII. As a feature
set, the classifier takes a concatenation of the text of URI, Referrer, postData
text, and all other HTTP headers in the flow. The validation accuracy of the
classifier is 97.2% (AUC=0.987), with 97.8% precision and 96.6% recall. For those
flows predicted to leak (any) PII, we extract the performed privacy practices
by matching the feature set against a predefined set of keywords and regular
expressions from ReCon [51].

The gold standard for identifying privacy leaks is by manually logging into
the apps and interacting with them. However, this approach is impractical at
scale. To automate the analysis, we rely on Android’s UI/Application Exerciser
Monkey [52], a command-line tool that generates pseudo-random user events
such as swipes, clicks, or touches. While running an app, we use mitmproxy [53]
(a TLS-capable interception proxy) to capture all app-generated traffic (HTTP
and HTTPS) on a dual-stack [54] WiFi in our testbed. Prior work showed that
synthetic usage patterns could lead to underestimating the number of privacy
leaks compared to manual (human) interactions [49] since random streams of
Monkey events may miss some function calls. While this is a common drawback
of automation approaches, Android’s Monkey exhibits the best code coverage
among existing automation tools [55].

In our effort to capture most—if not all—the privacy leaks produced by an
app, we take the union of leaks from static and dynamic analysis. Since labels
are different in the two cases, we map dynamic leak labels onto the static ones.
To this end, we compare the descriptions of static leak labels (see Table 6) with
the ones of dynamic leak labels in [47]. Table 1 lists the conversion between the
leak labels. We keep the static leak labels as our final ones since they match
the labels in the privacy policy text, making them convenient for the following
subsection.

2.5 Compliance Analysis

In the compliance analysis, we compare the leak labels with the privacy policy
labels. We consider a compliance violation to have occurred if there is a positive
value for a leak label and non-positive value(s) for the corresponding policy text
label(s). For some dynamic leaks labels in Table 1, a positive value for a leak
label is mapped to multiple labels in static leaks. For example, a positive value
for gsf id will result in mapping of positive values for both Identifier Ad

ID and Identifier Cookie. Therefore, if we compare individual combined leak
labels only, then we may come across unintended violations. For example, if there
are positive values for Identifier Ad ID and Identifier Cookie in the leak



Table 1. Label mapping between PII leaks from static analysis (static leaks) and leaks
from dynamic analysis (dynamic leaks).

Static Leaks Dynamic Leaks

Contact firstName, lastName

Contact E Mail Address email (+ hash)

Contact Password password (+ hash)

Contact Phone Number phone number

Demographics Gender gender

Identifier hardware serial (+ hash)

Identifier {Ad ID, Cookie} gsf id, advertiser id (+ hash)

Identifier Device ID android id (+ hash)

Identifier IMEI imei (+ hash)

Identifier {IMSI, Mobile Carrier,

SIM Serial}
sim id

Identifier MAC mac addr (+ hash)

Location {Bluetooth, Cell Tower,

GPS, IP Address, WiFi}
location

labels, but only a positive value for Identifier Cookie in the policy text labels,
then our system would be flagging Identifier Ad ID as a violation. Thus, to
avoid these unintended violations caused by our mapping table, we consider a
violation to have occurred if the policy labels do not return a positive value for
any of the similar labels (both Identifier Ad ID and Identifier Cookie in
this example).

For APKs that leak PII to third-parties, we also check for the existence
of those third-party domains in the APK’s privacy policy text. We examine
the domains that are not frequently mentioned in the privacy policies. Note
that the mention of the domain in privacy policy does not necessarily imply
that the policy text is indicating the sharing of PII with that domain, but the
absence of the domain from the policy text definitely implies that the company
or domain of the organization with which the app shares PII is not disclosed.
Furthermore, by distinguishing apps according to their categories, we identify the
most transparent categories (complying with the privacy policies) and categories
that have the most compliance issues.

3 Analysis and Results

In this section, we discuss our analysis of apps’ privacy policies and then present
leakages observed via our methodology. Finally, we present an analysis of apps
compliance with their privacy policies.

3.1 Privacy Policy Analysis

We obtain 3,151 unique privacy policies (P.P.) from the Internet Archive and
map them to 7,998 different app versions of 405 apps. We term an app’s privacy
policy as unique if it is obtained on a different date for an app. For example, if
we collect two privacy policies of an app from Internet Archive on two separate



dates, we term that two P.P. as unique, even if the contents of both the policies
are identical.

To map the P.P. to the different app versions, we bind each APK to the app’s
privacy policy immediately after the APK release date. We note that 42.6% of
the analyzed APKs have a time difference of fewer than 12 months between the
APK release date and the P.P. date (see §B).

The collected privacy policies contain 143,783 policy segments (or para-
graphs) in total. We restrict this set by considering only those segments that
return positive values on (i) at least one of the twenty-eight practice classifiers
(e.g., Contact), (ii) procedure (i.e., the practice described in the segment is being
performed or not performed), and (iii) parties (i.e., 1st Party or 3rd party). Out
of a total of 143,783 policy segments, 19,371 segments return a positive value
for the above three categories. We term these segments as valid segments. The
valid segments span across 2,455 privacy policies mapped to 329 apps. We will
rely on this subset (valid segments) to measure privacy policy violations in the
remainder of the analysis.

Figure 2a shows the distribution of the valid policy segments by the proce-
dure. A vast majority (97.48%) of valid policy segments have a positive value
for the Performed classifier. These segments (n=18,882) span across 2,422 P.P.
mapped to 327 apps. This also includes the segments that return positive values
for both Performed and Not Performed classifiers. A segment is not contra-
dictory if it has positive values for both Performed and Not Performed. For
example, the segment “we will only store your email and will not collect your
location” can have positive values returned by both the classifiers. In such cases
however, our classifiers are unable to distinguish between Performed PII type(s)
and Not Performed type(s). Therefore, to overcome this limitation and pre-
vent falsely flagging a policy for a violation, we assign all flagged PII types as
Performed. Similarly, for the segments that return positive values for both the
parties (n=2,944), we consider the flagged PII types(s) to be Performed by both
the parties. Among the segments that return positive value for the Performed

classifier (n=18,882), most have at least one practice being performed by the
first-party (88.14%).

The segments that return a positive value for the Not Performed classifier
only (n=489) span across the P.P. of 89 apps and 382 APKs. Among them, 33
APKs comprising eight apps have segments that only return a positive value for
the Not Performed classifier, i.e., these APKs’ P.P. only state that PII-revealing
practices are not performed. The three most common practices disclosed in the
P.P. are Identifier Cookie, Identifier IP Address, and Contact E Mail

Address. We empirically observe that the number of practices disclosed in the
analyzed P.P. is 19,038. This number implies an average of 7.86 per APK, or
7.75 if we also include the APKs whose policy segments only return a positive
value for the Not Performed classifier.

For a given year, a P.P. of an app can have multiple versions (based on the
date the P.P. was obtained). Among all the P.P. that disclose the collection of PII
to 1st party, 86.5% comprise multiple versions in the same year (86.1% for 3rd
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Fig. 2. (a) Breakdown of valid segments (n=19,371) into Procedure (Performed / Not
Performed). Valid segments for which Performed classifier returns a positive value
(n=18,882; Performed + Both) are broken down further into parties (1st / 3rd). (b)
Percent of P.P. versions in the given year showing an increase/decrease in the number
of practices disclosed. Among the newer versions of P.P. each year, more number of
them continue to disclose less PII.

party, respectively). Among these multiple versions, we compare the P.P. of an
app to their preceding version to identify if they are disclosing the collection of
more or less PII. Figure 2b shows the annual disclosure trend of P.P. obtained in
the years 2015-2019. We do not consider P.P. before 2015 due to fewer versions
available (< 10 annually). We observe the prevalence of P.P. with fewer PII
disclosures compared to their preceding version. In particular, 17.9% of P.P.
in 2018 show decreasing numbers of 3rd party disclosures (respectively, 16.4%
1st party disclosures), whereas only 8% of P.P. are found with more 3rd party
disclosures (respectively, 14.2% 1st party disclosures). For apps whose behavior
(leaks) remain uniform, the drop in the number of disclosures in P.P. can have
potential compliance issues.

3.2 Analyzing Leakages

Static Analysis: We analyze 7,741 different APKs (or app versions) of 350 dif-
ferent apps, from which we extract the PII-sensitive API calls. Among these calls,
24.2% (n = 28,001) are made by the first-party whereas 75.8% calls (n=87,497)
are initiated by third-party services or domains.

Figure 3a shows the distribution of these API calls to different types of PII.
Identifier Device ID and Identifier Mobile Carrier are the top two PII
that API calls (from both first and third-parties) are collecting.

Contrasting Static and Dynamic Leaks: Table 2 shows the annual dis-
tribution of apps and versions (APKs) that report PII leak(s) through static
analysis, dynamic analysis, and both.

We observe significant differences in the sets of PII-leaks found by static
analysis and dynamic analysis, with the former revealing more leaks than the
latter in the majority of cases (>85% of analyzed APKs) as shown in Fig-
ure 3b. For example, com.ace.cleaner version 6.0 leaked Identifier Device

ID, Contact E Mail Address, Identifier MAC, and Identifier Mobile



Table 2. Number of unique apps (and versions i.e., APKs) with at least one PII leak.
We report the leaks revealed by static and dynamic analysis. We also enumerate the
apps (and APKs), which are common to both the analysis. We only consider the apps
with retrieved privacy policy.

Year
(A) Static (B) Dynamic (A ∩ B)

#Apps #APKs #Apps #APKs #Apps #APKs

2008 3 33 5 44 2 30
2009 6 32 6 18 3 4
2010 24 102 17 34 13 20
2011 47 253 39 119 26 69
2012 87 550 66 197 53 171
2013 136 868 81 334 66 299
2014 173 1302 110 525 95 476
2015 272 2035 208 1018 178 847
2016 301 2485 235 1492 197 1242

0 10000 20000 30000 40000
Number of API Calls

Contact Phone Number
Identifier SSID BSSID

Contact E Mail Address
Identifier MAC

Identifier Cookie
Location WiFi
Location GPS

Location Cell Tower
Identifier Mobile Carrier

Identifier Device ID

3rd Party
1st Party

(a)

2 1 0 1 2 3 4 5 6 7
|# Static Leaks| - |# Dynamic Leaks|

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F 
of

 A
PK

s
1st Party
3rd Party

(b)

Fig. 3. (a) Number of sensitive API calls observed in the static analysis. (b) Difference
in number of static leaks and dynamic leaks. At least 85% of analyzed APKs have more
leaks discovered in the static analysis than in the dynamic analysis.

Table 3. Summary of PII Leaks from analyzed apps. In columns 2, 3, and 6, the
numbers in parenthesis i.e., () represent the number of versions of apps (APKs).

Year
#Apps Leaks to 1st Party Leaks to 3rd Party

# Apps #Leaks #Leaks #Apps #Leaks #Leaks
(#APKs) (#APKs) per APK (#APKs) per APK

2008 6 (47) 4 (34) 116 3.41 5 (34) 0 0
2009 9 (46) 6 (29) 116 4.00 6 (21) 12 0.57
2010 28 (116) 20 (84) 252 3.00 21 (63) 187 2.97
2011 59 (303) 39 (169) 558 3.30 53 (269) 726 2.70
2012 99 (576) 67 (354) 1127 3.18 94 (525) 1531 2.92
2013 149 (903) 99 (637) 2217 3.48 141 (835) 3202 3.83
2014 188 (1351) 132 (940) 3289 3.50 182 (1306) 5780 4.43
2015 302 (2206) 207 (1485) 5475 3.69 300 (2155) 9228 4.28
2016 339 (2735) 234 (1841) 7184 3.90 336 (2707) 11998 4.43



0 2 4 6 8 10
Number of Leaks

0.2

0.4

0.6

0.8

1.0

C
D

F 
of

 A
PK

s

2012
2013
2014
2015
2016

(a) Leaks to 3rd Party

0 1 2 3 4
Number of Violations

0.2

0.4

0.6

0.8

1.0

C
D

F 
of

 A
PK

s

2012
2013
2014
2015
2016

(b) Violations to 1st Party

0 1 2 3 4 5 6
Number of Violations

0.2

0.4

0.6

0.8

1.0

C
D

F 
of

 A
PK

s

2012
2013
2014
2015
2016

(c) Violations to 3rd Party

Fig. 4. Cumulative Distribution Functions (CDFs) of leaks for (a) 3rd party. Annual
CDF of violations for (b) 1st party, and (c) 3rd party. Over time, the total number of
leaks from APKs and PII violations are increasing.

Carrier to third-parties in the static analysis whereas only advertiser id,

and location were leaked to third-parties in the dynamic analysis. Part of
the PII leaks is missed by dynamic analysis due to limitations of Android’s
UI/Application Exerciser Monkey in triggering all PII-related API calls. At the
same time, we observe that static analysis could not detect some PII leaks (user’s
ad ID, cookie ID, location data sharing) as these appeared in dynamically loaded
code or obfuscated function calls. The limitations of both static and dynamic
analysis demonstrate that only the union set of leaks from the static and dy-
namic analysis can allow for effective or useful profiling of the privacy-related
behavior of an app.

Besides, we examine the prevalence of detection from either static or dynamic
analysis for different PII leaks in the period 2012-2016 – we do not analyze
the years before 2012 due to insufficient data (<350 APKs). We empirically
observe that the most commonly accessed PII is the Identifier Device ID by
first-parties and Identifier Mobile Carrier and Identifier Device ID by
third-parties.

Trend of Leaks: We then take the union of PII leaks observed in static
and dynamic leaks using the mapping table (see Table 1). The summary of
combined leaks, shown in Table 3, suggest that the average number of PII leaks
per APK has risen consistently since 2012, from an average of 3.18 to first-
parties (respectively, 2.92 to third-parties) in 2012 to 3.9 (respectively, 4.43 to
third-parties) in 2016. Another interesting takeaway is the rise of leaks to third-
parties in comparison to the first-parties. Till 2012, apps leaked PII mostly to the
first-parties, and since then, they have been leaking mostly to third-parties. We
can also observe this trend in Figure 4, which shows a more significant increase
over time for the third-party leaks (Figure 4a) compared to the case of first-
party leaks. For instance, 62.9% of the APKs exhibit less than three leaks to
third-parties in 2012, compared to 27.3% in 2016. Similarly, 21.7% of the APKs
exhibit more than five leaks to third-parties in 2012, which increased to 31.1%
in 2016. This trend can be attributed to the increasing embedding of ad and
tracking libraries in the apps [56,57].



Table 4. Summary of contradictions or violations of analyzed apps with their privacy
policies. In column 2, the numbers in parenthesis i.e., () represent the number of app
versions (APKs).

Year

#Apps #(%)APKs #Leaks #Leaks #Leaks #Leaks #Leaks
(#APKs) comply. Total viol. per APK to 1st P. to 3rd P.
with ≥ 1 with P.P. P.P. viol. P.P. viol. P.P. viol. P.P.
valid seg.

2008 3 (11) 11 (100) 8 0 0 0 0
2009 5 (24) 18 (75) 57 9 0.38 0.38 0
2010 18 (80) 37 (46.25) 313 71 0.89 0.56 0.32
2011 37 (187) 62 (33.16) 820 240 1.28 0.70 0.59
2012 69 (364) 117 (32.14) 1622 556 1.53 0.65 0.88
2013 96 (584) 104 (17.81) 3473 1264 2.16 0.77 1.39
2014 126 (860) 79 (9.19) 5332 2160 2.51 1.00 1.51
2015 195 (1381) 149 (10.79) 8640 3909 2.83 1.10 1.73
2016 225 (1748) 188 (10.76) 11338 5210 2.98 1.04 1.94

3.3 Compliance Analysis

Disclosure of practices performed: In the compliance analysis, we compare
the combined (static and dynamic) leaks of an APK with the practices reported
in the privacy policy. A privacy policy violation occurs if a leak observed in
static/dynamic analysis is not mentioned in the privacy policy. For example, our
analysis finds that the app com.fitbit.FitbitMobile [58] with the version code
2182996 (APK release date: 22 Jun 2016) has privacy policy (dated: 16 Sep 2016)
violations for Identifier Device ID, and Identifier Mobile/Sim practices
being performed by the third-parties. On manually inspecting the privacy policy
text, we do not find the disclosure of the practices mentioned above for third-
parties. For disclosing data to third-parties, the app’s policy states: “Data That
Could Identify You Personally Identifiable Information (PII) is data that in-
cludes a personal identifier like your name, email or address, or data that could
reasonably be linked back to you. We will only share this data under extremely
limited circumstances”. This generic clause may seem to be allowing the app
developers to share the user’s data, but Android’s policy on user data states
that the developers must describe the data being collected and explain their
usage [25]. This means that the PII sharing from the Fitbit app does not comply
with the declared public privacy policy of the app.

Table 4 lists the annual summary of violations observed in APKs. These
violations only refer to those APKs whose privacy policy contains at least one
valid segment i.e., a segment that returns positive values on (i) at least one of the
twenty-eight practice classifiers (e.g., Identifier Cookie), (ii) procedure (i.e., the
practice being described in the segment is being performed or not performed),
and (iii) parties (i.e., 1st Party or 3rd party). Most of the policy text segments
(124,412/143,783) that we classified did not return positive values for the above
three categories (see §3.1). For these cases, our machine-learning classifier could
not determine whether the policy text presents a practice as “performed” or “not
performed” by the parties. From Table 4, we can observe that the compliance
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Fig. 5. Percent of APKs released in the given year showing an increase/decrease in
the number of violations compared to their preceding version (APK). Newer versions
of apps continue to leak more PII that violate privacy policy.

of APKs with their P.P. has decreased considerably from 33.16% in 2011 to
10.76% in 2016. The average number of leaks per APK that is not disclosed in
the P.P. is also steadily increasing. We can observe this trend in Figure 4b and
4c, showing that the number of P.P. violations is consistently increasing overtime
for a significant fraction of APKs.

We empirically note that Identifier Mobile/Sim (grouping of Identifier
IMSI, Identifier Mobile Carrier, and Identifier SIM Serial based on
the mappings in Table 1) annually contributes to more than 25% of first-party
and more than 30% of third-party violations. Identifier Device ID is next,
comprising more than 20% of annual violations. This suggests that privacy policy
violations are often due to apps fingerprinting users’ mobile devices without
revealing it.

Compliance of an app across newer versions: For a newer version
(APK) of an app released, it can have (i) equal number, (ii) higher number,
or (iii) smaller number of privacy policy violations compared to the preceding
version of the given app. Figure 5 shows the annual compliance trend of APKs
released in the years 2012-16 compared to their preceding version. For example,
if an app released versions in Oct’15, Dec’15, Feb’16, Jul’16, and Nov’16, then
for the year 2016, the number of violations of APK released in Nov’16 will be
compared with Jul’16, Jul’16 will be compared with Feb’16, and Feb’16 will be
compared with Dec’15. For the set of app versions released in 2012-2016, we
observe the prevalence of apps with more privacy policy violations compared to
their preceding version. In particular, 9.1% of APKs from 2016 show increas-
ing numbers of third-party violations (respectively, 9.2% first-party violations),
whereas only 3.8% of APKs are found with fewer third-party violations (respec-
tively, 2.5% first-party violations).

Disclosure of 3rd Party Domains: Given the set of PII leaks to third-
party domains, we verify whether those domains are mentioned in the P.P. text.
Table 5 shows the distribution of P.P. based on the disclosure of third-party
domains. We note that a vast majority of P.P. (82.2%) do not mention at least
one domain with which they share PII.



Table 5. Breakdown of privacy policies based on the disclosure of 3rd party domains
with which their APKs share PII.

% (#) of APKs with Privacy Policies (P.P.) mentioning

ALL NONE PARTIAL
3rd party domains 3rd party domains 3rd party domains

17.8% (1,419) 23.85% (1,901) 58.35% (4,651)

Figure 6a shows the annual distribution of the number of domains that are
not mentioned in the P.P. We observe a significant increase in the number of
third-party domains that app publishers do not disclose despite being involved in
PII sharing. In particular, while in 2012, almost 70% of the released APKs had no
more than one 3rd party domain “missed” by their privacy policies; in 2016, this
percentage dropped to less than 30%. Figure 6b shows the twenty most recurrent
domains that are not disclosed in the privacy policies. Overall, these twenty
domains account for 49.5% of the total instances where third-party domains are
not disclosed. Each of these domains provides a library for analytical services,
advertisements, social networking, or utility/developer tools to the app. The
most frequently not mentioned domain in the privacy policies by app publishers
is facebook.com, accounting for more than a quarter (27.8%) of the analyzed
APKs. It is followed by flurry.com (19.7%) and google.com (18.9%).

4 Discussion

The increase in the number of violations over time is concerning. The causes of
increased violations can be that (i) the P.P. has shrunk, i.e., newer versions of
P.P. of an app are disclosing the collection (or sharing) of less number of PII, (ii)
the behavior of app has changed, i.e., newer versions of an app are leaking more
PII, (iii) or both. We observe in Figure 2b that among the newer versions of
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Fig. 6. (a) CDFs of number of domains not mentioned in the privacy policy of APKs.
Each subsequent year, APKs share PII to more 3rd party domains that are not dis-
closed in their privacy policy. (b) Prevalence of undisclosed domains among the privacy
policies of APKs.



P.P., the number of P.P. that had a decrease in the number of disclosed practices
compared to the preceding version were in greater proportion than those that
had an increased disclosure of PII. Furthermore, as evident from Table 3, the
number of leaks has also been on the rise, particularly to third-party domains.
With the rise of third-party advertisements and analytics services, this comes
as no surprise. The increase in the concealment of third-party domains (most
recurring domains being advertisement and analytics) from the P.P. text (see
Figure 6a) lends further support to this argument.

5 Limitations

Despite our best efforts to longitudinally analyze apps’ compliance, there are
still some limitations to our work.

To scale up the study and cope with a large number of apps/versions, we
leveraged automated analysis tools and machine learning classification. While
this may result in “false positive” detection of privacy violations, the risk of
false positives is, in fact, limited: static app analysis techniques are deterministic
(they rely on pattern matching), and dynamic privacy leak detection has high
validation accuracy (above 97%).

The use of machine learning and natural language processing for analyzing
the privacy policy texts has some limitations. Privacy policies with generic state-
ments or subjectively redundant words are arduous to interpret without human
intervention. The use of subjective verbiage in handling users’ data is also not
recommended by Android [25].

In this study, the level of severity of privacy leaks is a fixed assumption.
For example, some users may find the location a more intrusive leak than email
id and vice-versa. Furthermore, the gap between the app version release date
and the P.P. date (policy snapshot that matches the release date) can be several
months. This gap is because the Wayback Machine could not find a P.P. snapshot
closer to the release date. Therefore, it may be possible that the policy under
consideration is significantly different from the irretrievable one and thus may
not be accurately reflecting the app version’s data practices.

6 Related Work

In recent years, there have been many research studies on the privacy implica-
tions of web tracking, and privacy protection [59–63]. In privacy policies, apps’
developers must declare all the permissions an app will require to perform the
tasks; however, previous study has shown that websites rarely disclose “Do Not
Track” DNT in their privacy policies, and most websites do not comply with
DNT even after disclosing it [64].

Zimmeck et al. [22], Slavin et al. [17], and Wang et al. [18] employed static
analysis for analyzing privacy policy violations in Android apps. Zimmeck et
al. [22] and Slavin et al. [17] used Android API calls to identify the collection of
users’ PII from mobile devices. Using native code, Wang et al. [18] check data
transparency for data provided by users via GUI components. Han et al. [21]



used static and dynamic analysis to compare free and paid versions of the apps
for data leaks, embedded third-party libraries, and sensitive permissions. Reyes
et al. [19], Okoyomon et al. [20], and Andow et al. [23] leveraged dynamic analysis
for identifying contradictions in the behavior of apps with the privacy policies
or regulations.

Perhaps, a much closer work to our’s is by Ren et al. [47], where they moni-
tored the network traffic to detect PII leaks of 512 Android apps across different
versions. They show that apps leak PII to more third-party domains over time.
We build on this work by conducting a compliance analysis of apps across differ-
ent versions by taking the union of leaks detected in static and dynamic analysis
and then comparing those leaks with the disclosure of PII in privacy policies.

The above studies have significantly contributed to the understanding of pri-
vacy leaks in Android apps by performing a static or dynamic analysis of apps.
However, these studies have been conducted at a snapshot and have not been
comprehensively evaluated over time. Given that the mobile ecosystem is con-
tinuously evolving, measurement studies longitudinally starting in the present
may not comprehensively illuminate privacy policy violation trends to improve
compliance. To fill this research gap, our study incorporates a longitudinal anal-
ysis spanning eight years. Furthermore, static analysis alone cannot deal with
dynamically loaded code and obfuscated function calls, while dynamic analysis
is prone to miss part of the function calls in the app. Our methodology raises the
bar in the analysis of privacy leaks by combining static and dynamic analysis
to capture most–if not all–of the leaks in Android apps. To our knowledge, the
comprehensive longitudinal view on the Android app compliance with privacy
policies has not been explored yet.

7 Concluding Remarks

In this paper, we analyzed the 5,240 historical versions, from 2008 to 2016, of 268
popular Android apps and investigated their compliance with the app privacy
policies (P.P.). Our study found that most apps follow practices that contravene
what is declared in their privacy policy. Our results also showed that apps are be-
coming more prone to violating their privacy policy than before, as we observed
that the percentage of released app versions that comply with their privacy pol-
icy is steadily declining over time. In particular, the newer app versions disclose
fewer PII collections in their P.P. and share more of a user’s private information
through practices not mentioned in the P.P. This trend is of primary concern
to users, especially considering that P.P. remains the cornerstone for protecting
online privacy.

As future work, we aim to extend our study to recent years to evaluate the
change in the data disclosure and collection (or sharing) practices caused by
the GDPR. We also plan to study the similarity between the privacy policy of
non-compliant apps to determine if third-party privacy policy generators have
created their privacy policy. In this manner, app developers can be notified of
the breach since app developers are often not experts in policy compliance and
privacy laws.
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8 Appendix

A Apps Selection
For the privacy policy analysis, we obtain 3,151 privacy policies and map them
to 405 apps (comprising 7,998 APKs). Among the 3,151 privacy policies, 2,455
contain at least one valid segment and are mapped to 329 apps. From the 405
apps, we successfully download and analyze (static + dynamic) 350 apps com-
prising 7,741 APKs (or app versions) from the unofficial Google Play API. For
each APK, we obtain its release date and assign a privacy policy based on the
closest timestamp after the release date. For the compliance analysis, we only
consider the APKs with at least one valid segment in their assigned privacy pol-
icy. Among the 7,741 APKs (spanning 350 apps) that we analyzed, 5,240 APKs
(spanning 268 apps) satisfy the criterion and are considered for compliance anal-
ysis. It is possible for a given app to appear in privacy policy analysis and leaks
analysis but not in compliance analysis. For example, an app has four versions
(v1.1, v1.2, v1.3, and v1.4) and three unique privacy policies (pp1, pp2, and
pp3). Suppose that pp1 is assigned to v1.1 and v1.2, and pp3 is assigned to v1.3
and v1.4. If pp2 contains valid segment(s), but pp1 and pp3 do not contain any
valid segment, then the given app will not feature in the compliance analysis.

B Date difference
Figure 7 shows the time difference in months between the date when the privacy
policy was crawled by the Wayback Machine and the release date of the app.
42.6% APKs have a time difference of fewer than 12 months with their mapped
privacy policy date.
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Fig. 7. Difference in months between the privacy policy date and APK release date.

C Label Descriptions and Classifiers Performance
Table 6 describes the various PII labels used in our privacy policy classifica-
tion. Table 7 shows the performance of various machine learning classification
algorithms on the test data-set of APP-350 corpus [37].



Table 6. Descriptions of PII disclosures in the privacy policies that are col-
lected/shared.

Data Type (PII) Description

Contact Unspecified contact data.

Contact Address Book Contact data from a user’s address book on the phone.

Contact City User’s city.

Contact E Mail Address User’s e-mail.

Contact Password User’s password.

Contact Phone Number User’s phone number.

Contact Postal Address User’s postal address.

Contact ZIP User’s ZIP code.

Demographic User’s unspecified demographic data.

Demographic Age User’s age (including birth date and age range).

Demographic Gender User’s gender.

Identifier User’s unspecified identifiers.

Identifier Ad ID User’s ad ID (such as the Google Ad ID).

Identifier Cookie User’s HTTP cookies, flash cookies, pixel tags, or similar identifiers.

Identifier Device ID User’s device ID (such as the Android ID).

Identifier IMEI User’s IMEI (International Mobile Equipment Identity).

Identifier IMSI User’s IMSI (International Mobile Subscriber Identity).

Identifier IP Address User’s IP address.

Identifier MAC User’s MAC address.

Identifier Mobile Carrier User’s mobile carrier name or other mobile carrier identifier.

Identifier SIM Serial User’s SIM serial number.

Identifier SSID BSSID User’s SSID or BSSID.

Location User’s unspecified location data.

Location Bluetooth User’s Bluetooth location data.

Location Cell Tower User’s cell tower location data.

Location GPS User’s GPS location data.

Location IP Address User’s IP location data.

Location WiFi User’s WiFi location data.



Table 7. Performance of different classifiers. Multinomial Naive Bayes (MNB), Logistic
Regression (LReg), and Linear Support Vector Classifier (SVC). The accuracy scores
for SVC range from 91.16% to 100%.

Classifiers
accuracy (%) precision (%)

MNB LReg SVC MNB LReg SVC

Contact 98.6 98.7 98.8 0 77.8 65.4

Contact Address Book 98.8 99.3 99.4 0 79.5 80.5

Contact City 99.6 99.8 99.8 0 81.8 73.3

Contact E Mail Address 95.9 97.3 97.2 84.8 84.8 83

Contact Password 98.8 99.2 99.4 0 70.7 78.6

Contact Phone Number 97 98.8 98.8 9.1 86.7 83.6

Contact Postal Address 98 98.6 99 0 68.5 80.3

Contact ZIP 99.4 99.8 99.8 0 94.1 94.4

Demographic 98.7 99.6 99.6 25 79.2 78.9

Demographic Age 98.3 99.3 99.4 16.7 89.3 90

Demographic Gender 98.9 99.6 99.6 16.7 79.3 79.3

Identifier 99.1 99.1 99.1 0 0 66.7

Identifier Ad ID 98.8 99.7 99.8 0 97.7 97.8

Identifier Cookie 95.4 98.7 98.5 90.3 88 88.6

Identifier Device ID 97.9 99 99 73.6 86.7 83.7

Identifier IMEI 99.4 99.8 99.9 50 92.6 93.1

Identifier IMSI 99.9 99.9 99.9 0 100 100

Identifier IP Address 99.1 99.4 99.4 90.1 94.1 94.8

Identifier MAC 99.3 99.9 99.9 0 92.6 96.3

Identifier Mobile Carrier 99.4 99.7 99.7 0 100 85.7

Identifier SIM Serial 99.8 99.8 99.8 0 44.4 56.3

Identifier SSID BSSID 99.8 99.8 99.9 0 0 100

Location 96.7 98.8 98.8 80.9 86.5 87

Location Bluetooth 99.4 99.8 99.8 0 80 81

Location Cell Tower 99.5 99.9 99.9 25 79.2 81.8

Location GPS 99 99.7 99.7 64.7 90.2 88.7

Location IP Address 99.3 99.6 99.6 0 85.7 78.3

Location WiFi 99.6 99.8 99.8 70 77.8 83.3

Performed 90.5 91.7 91.2 91.7 90.9 86.3

Not Performed 98.6 98.9 98.7 3.2 34.2 30.5

1stParty 91 92.5 92.3 81 85 82.7

3rdParty 94.9 96.7 96.7 53.3 73.8 71.6

average 98.06 98.82 98.82 28.94 77.22 81.92


