
An Empirical Analysis of Security and Privacy
Risks in Android Cryptocurrency Wallet Apps

I Wayan Budi Sentana1[0000−0003−3559−5123], Muhammad
Ikram1[0000−0003−0336−0602], and Mohamed Ali Kaafar1[0000−0003−2714−0276]

Department of Computing, Macquarie University, 4 Research Park Drive, Sydney,
NSW, Australia, 2113

Abstract. A cryptocurrency wallet app is a piece of software that man-
ages, stores, and generates private keys of cryptocurrency accounts. With
the provision of services such as easy access to transaction history, and
checking account balance besides transmissions of new transactions in
distributed networks such as Blockchains, cryptocurrency wallet apps
gain unprecedented popularity which in turn attracts malicious actors
to attack users resulting in loss of cryptocurrency assets and leakage of
sensitive user data. This paper presents the first large-scale study of An-
droid cryptocurrency wallet apps. We surveyed apps on Google Play to
detect and extract meta-data and application packages of 457 cryptocur-
rency wallet apps. We perform several passive and active measurements
designed to investigate the security and privacy features to study the be-
havior of cryptocurrency wallet apps. Our analysis includes investigating
cryptocurrency wallet apps’ third-party embedding, malware presences,
and exfiltration of users’ sensitive data to third-parties. Our study re-
veals vulnerabilities and privacy issues in cryptocurrency apps including
the insecure use of HTTP to serve transactions.

Keywords: Cryptocurrency Wallet · Static Analysis · Dynamic Analy-
sis · User-review Analysis.

1 Introduction

Cryptocurrency wallet applications (or wallet apps) for mobile devices are used
to securely store cryptocurrency assets and enable users to control their assets
over private keys. Like using any type of mobile application, users of wallet apps
are possibly faced with security and privacy vulnerabilities rendered by devel-
opers’ coding practices and privacy practices related to their business models.
However, as wallet apps are involved in controlling users’ financial assets, the vul-
nerabilities become more severe if they are leveraged by attackers. For instance,
adversaries could leverage the embedded third-party libraries and request per-
missions of the app to steal important information such as private keys. Hence,
it is important to assess wallet apps’ behaviors for potential security and privacy
issues to inform users as well as developers. Recently, several works have stud-
ied security and privacy issues of wallet apps [29,18,15,22]. Nevertheless, their

2 I Wayan Budi Sentana, Muhammad Ikram, and Mohamed Ali Kaafar

analysis focuses on some characteristics such as apps requested permission, and
privacy leakage, and are limited to a few existing apps.

To provide a comprehensive assessment of the security and privacy issues
of 457 Android wallet apps, we perform the first large-scale study of the pri-
vacy and security features of wallet apps on Google Play. We first collect wallet
apps available in the Google Play store. We use static analysis and dynamic
analysis to investigate the privacy and security features of these apps. In static
analysis, we evaluate the source code of each app to identify the requested per-
missions, third-party libraries embedding, malware presence, and anti-analysis
adoption. Whereas in dynamic analysis, we monitor the application during ex-
ecution and capture the network traffic to observe the application interaction.
Moreover, we analyse wallet apps’ privacy policies for compliance and evaluate
users’ perceptions by investigating users’ comments. To foster future research,
we release our code and dataset used in this paper to the research community:
https://walletapps2021.github.io/. The main contributions of our work are
as follows:

Source code analysis. We collect a corpus of 457 wallet apps from Google
Play and illuminate their evolution and popularity on Google Play (§ 2.2). We
systematically analyse wallet apps’ source codes and find potential security issues
spanning from requesting dangerous permission, embedding third-party libraries
for advertising and tracking purposes, presence of malware code, and using anti-
analysis techniques, etc. (§ 4).

Our analysis identified 8 (1.7%) apps using sensitive permission such as an-
droid.permission.DOWNLOAD WITHOUT NOTIFICATION in their code which, once
requested, enables the app to download any file or malware executables without
user consent, 25 (5.4%) wallet apps embed malware code in their source code
according to VirusTotal [39]. We also found 13 (2.8%) apps embed Cross-Library
Data Harvesting (XLDH) library [40] which “illegally” extracts user information
from legitimate libraries such as Facebook, Google, Twitter, and Dropbox.

Apps’ network traffic analysis. We investigate the runtime and net-
work behavior of the wallet apps by installing them into an Android phone
and navigating the app’s activities while running on the phone (§ 5). Our
analysis detected broad evidence of potential security and privacy issues of
the apps, including data leakages, using unencrypted transmission via HTTP,
and requesting third-party domains containing advertisers and trackers. For in-
stance, we detected 148 apps transmitting their traffic via unencrypted HTTP
protocol. Moreover, we identified 15 apps (e.g.,com.btcc.mobiwalletand and
com.coinburp.mobile) sharing user credentials and device information with
third-parties via HTTP.

Privacy policy and users’ reviews analysis. We analyse potential com-
pliance issues of apps by evaluating apps’ privacy practices and investigating
app user reviews (§ 6). Particularly, our analysis detected 87 (19%) apps failed
to provide privacy policy links for their user and 78 (17%) violated the privacy
policy related to sharing users’ information with third-parties.

https://walletapps2021.github.io/

Title Suppressed Due to Excessive Length 3

2 Background and Data Collection Methodology

2.1 Background

Cryptocurrency is a digital asset that uses cryptography to ensure its creation se-
curity and transaction security [41]. There are over 2,500 different kinds of cryp-
tocurrencies now, where the most well-known cryptocurrencies are “Bitcoin”
and “Ethereum” which are traded at numerous cryptocurrency exchanges or
marketplaces. Cryptocurrency exchanges offer trade services among cryptocur-
rencies. There are centralised exchanges (governed by a company), decentralized
exchanges (provided an automated process for peer-to-peer trades), and hybrid
exchanges [41].

The traded cryptocurrencies are normally kept at wallet in the form of hash
values termed as wallet addresses [22]. Each address is corresponding to a pair
of keys: public and private. The public key is used for external transactions such
as sending or receiving cryptocurrencies. In order to prove the ownership of the
cryptocurrency, each transaction is signed with a private key. If a user loses their
private keys, they will lose their associated cryptocurrency assets. Anyone who
gains the private key of a public address can authorize a transaction.

2.2 Cryptocurrency Wallet Apps Collection on Google Play

Google Play neither lists wallet applications as distinct apps’ categories nor its
search functionality yields all wallet applications. To collect and identify all

possible wallet apps, we develop a crawling methodology. First, we query Google
Play search with cryptocurrency-related keywords to collect a seed cryptocur-
rency wallet app. The keywords consist of “crypto”, “cryptocurrency”, “bitcoin”,
“coin”, “Ethereum”, “wallet”, and others coin abbreviation such as “BTC”,
“ETH” and “DOGE“. We then use Google Play Store Scraper API1, a tool for
scraping and parsing application data from the Google Play Store2, to recur-
sively crawl similar apps of the seed app IDs. By using this method, we found
3,629 app IDs. The API also returned the apps’ meta-data such as the app’s ti-
tle, average rating, user reviews, descriptions, and categories to be further used
for the app’s selection. We then manually checked each app’s description and
filtered only cryptocurrency wallet apps. Finally, we obtain 457 free cryptocur-
rency wallet apps. We leverage gplaycli3 to download the application packages
(APKs) from Google Play of 457 cryptocurrency wallet apps. Given that Google
Play does not report the actual release date of the apps but their last update,
we use the date of their first comment as a proxy for their release date. For
63 (13.8%) apps without any user reviews as of this writing, we determine the
approximate release date by their last update.

Figure 1 shows that cryptocurrency wallet apps have increased four-fold since
February 2018. Figure 2 depicts the distributions of the number of installs and

1 https://pypi.org/project/google-play-scraper/
2 https://play.google.com/store
3 https://github.com/matlink/gplaycli

4 I Wayan Budi Sentana, Muhammad Ikram, and Mohamed Ali Kaafar

an average rating of the analyzed cryptocurrency wallet applications on Google
Play. We found that 21.8% (100) of the applications have at least 50,000 installs.
We also observe that 51.3% (234) of the applications have at least 3.0 average
ratings showing that the vast majority of the applications are positively rated
by users. Conversely, we noted that 63 (13.8%) apps without any reviews have
an average rating of 0.0 and have at most 500 installs.

2011/3
2012/3

2013/2
2014/2

2015/2
2016/2

2017/2
2018/2

2019/1
2020/1

2021/1

Apps Release Date

0

100

101

102

W

al
le

t A
pp

s (
lo

g)
Total
Daily

Fig. 1: Evolution of the analyzed cryptocurrency wallet apps on Google Play.

0
25
50
75

100

of

 A
pp

s

●

●

0

1

2

3

4

5

0
1−

5
5−

10

10
−5

0

50
−1

00

10
0−

50
0

50
0−

1K

1K
−5

K

5K
−1

0K

10
K−5

0K

50
K−1

00
K

10
0K

−5
00

K

50
0K

−1
M

1M
−5

M

5M
−1

0M

of Installs

A
vg

. R
at

in
g

Wallet Apps

0 20 40 60
of Apps

●

Fig. 2: Distribution of the number of installs and average app’s rating of the
analyzed cryptocurrency wallet apps on Google Play.

3 Assessment Methodology

We use a set of custom-built tools to assess source codes and network runtime
behaviors of the apps for potential security and privacy issues. The following

Title Suppressed Due to Excessive Length 5

sections describe our analysis categorised into static, dynamic, and compliance
analysis.

3.1 Static Analysis

We assess wallet apps for requesting sensitive permission, presence of third-party
tracking libraries and malware codes, use of security certificates, anti-analysis
methods, compliance and user reviews analysis, and leakage of sensitive data to
third-parties.

Permission Analysis. To get the resources it needs during runtime, each
wallet app must declare all of its resource requirements in the AndroidMani-

fest.xml file. We use apktool to decompress the APKs of the analysed apps
and extract all permissions declared in <uses-permission> and <service>4

tags. We analyse the requested permissions for potential vulnerabilities and wal-
let apps’ capabilities for possible exploits.

Tracking Libraries. By inspecting the decompressed source code of each
app, we examine the presence of embedded third-party libraries. To identify
which libraries are associated with tracking, analytics, and advertising services,
we aggregate the manually curated list of 383 tracking and advertising libraries
from [32,19,20]. In particular, we inspect the APK file of an app to determine
sub-directories and match them with our list of tracking and advertising libraries.
If there is a match between the sub-directory and an entry of the third-party
libraries, the app is deemed to be used by the corresponding third-party library.
Given that apps may use obfuscation methods to hide the names of third-party
libraries [8,14], we consider our results as a lower bound on the presence of
third-party libraries in cryptocurrency wallet apps.

We also analyzed the existence of suspicious Cross-Library Data Harvest-
ing (XLDH) libraries in cryptocurrency wallet apps. XLDH is a type of library
that steals user information from legitimate libraries such as Facebook, Google,
Twitter, and Dropbox. XLDH libraries actively scan the legit libraries’ existence
and extract important information from the library’s Software Development Kit
(SDK) embedded in the same apps. Extracted information including user ac-
cess token, user name, advertisement ID, and user image is then sent to the
XLDH libraries server. Due to the illegal operation, Facebook has taken legal
action against several companies providing this XLDH library [40]. To identify
the emergence of XLDH libraries, we scanned the third-party libraries embed-
ded by the cryptocurrency wallet app and compared the results against a list
published by [40].

Malware Presence. We leverage VirusTotal [39], an online solution that
aggregates the scanning capabilities provided by over 70 antivirus engines (AV),
to detect malware activities in the apps. We automate our malware analysis by
using VirusTotal’s Report API to retrieve the malware detection results. After
completing the scanning process for a given app, VirusTotal generates a positive

4 Note that service permissions are requested at runtime to enable specific functions
such as connecting to a VPN network.

6 I Wayan Budi Sentana, Muhammad Ikram, and Mohamed Ali Kaafar

report that indicates which of the participating AV scanning tools detected any
malware activity in the app and the corresponding malware signature (if any).

Out of 457 apps, 153 apps have a size more than the VirusTotal API threshold
(32 MB) which cannot directly scan for by using the API. Fortunately, there
are 35 apps that have been analyzed by the VirusTotal previously. Hence, we
manually upload 118 apps to the VirusTotal website to scan for malware presence
in the apps.

Anti-Analysis Detection. We determine whether an app uses any means
of evading, obscuring, or disrupting the analysis of parties other than the ap-
plication developers. In fact, malware developers rely on these techniques to
evade basic analysis layers of application market stores such as Google Play [6].
For example, He et al. [16] found that 52% of their malware samples lever-
aged anti-analysis techniques to evade, obscure, or disrupt analysis methods.
We use APKiD5 tool to obtain a list of anti-analysis techniques such as “manipu-
lator”, “anti-virtual machine”, “anti-debug”, “anti-disassembly”, “obfuscator”,
and “packer” (cf. Appendix A for further details).

3.2 Network Measurements

To investigate the runtime and network behavior of the cryptocurrency wallet
apps, we manually install each app on a Huawei GR5 phone running Android
Version 7.0 and navigate the app running on the phone. In order to capture the
network traffic generated by each app, we run mitmproxy6 at a WiFi access point
to intercept all the traffic being transmitted between the mobile phone and the
Internet. For each of the analysed apps, we manually navigate the app activities
such as login and clicking on buttons to potentially execute app components. Our
manual tests last for at least three minutes per app. We inspect the captured
network traffic of each app for data leakages, communication with third-party
domains, and HTTPS adoption.

3.3 Compliance and User Comments Analysis

Privacy Policy Analysis. We aim to examine the compliance of the apps’
developers in two categories: (i) providing a privacy policy link, and (ii) adhering
to the privacy policy in terms of sharing user information with third-parties
(TP). In the first category, we mark an app as violating the privacy policy
agreement if it does not provide a privacy policy link or does provide a misleading
link such as a broken link or an inaccessible link. In the second category, we mark
an app to be failing to adhere to the privacy policy if it declares not to share user
information with the TPs in the privacy policy descriptions, but in fact, sharing
them during the app’s execution. We develop a tool to retrieve and extract the
privacy policy description of each app using the BeautifulSoup Python library.

5 https://github.com/rednaga/APKiD
6 https://mitmproxy.org/

https://mitmproxy.org/

Title Suppressed Due to Excessive Length 7

We then use a machine learning classification model [42] to classify if the app
claims to collect and share user information with TPs in its privacy policy.

User Reviews Analysis. Unlike most financial applications such as bank-
ing apps developed and released by official financial institutions such as banks [3],
cryptocurrency wallet apps can be developed and released by any party or de-
veloper. Another key feature of the wallet apps is that there is no underlying
asset like the banking system. Users choose cryptocurrency wallets only based
on trust. Thus, in this study, we make user review one of the important pa-
rameters in analyzing security issues and the possibility of privacy leaks from
users of cryptocurrency wallet apps. We create scripts to aggregate user reviews
(comments) for each app and classify them into positive (4- and 5-star), neutral
(3-star), and negative (1- and 2-star) reviews according to the number of stars
that the user chose for the app.

4 Static Analysis Result

4.1 Permission Analysis

Android classifies permission requests into three categories including normal per-
missions, dangerous permissions, and signature permissions [10]. We found 8,339
permission requests from 457 wallet apps. We group the permission requests ac-
cording to the resource sensitivity access levels. Additionally, Android also allows
third-parties to develop their own permissions with names and syntax tailored
to the standard developer library. We found that 1,755, 2,802, and 570 permis-
sion requests fall into the dangerous category, normal category, and signature
permissions respectively. In addition, we found that 3,212 permission requests
were not covered by the permission level list listed in [10]. We then group these
permission requests into the customized/third-party permission category for our
further analysis.

Table 1: Top 10 dangerous permissions requested by analyzed cryptocurrency
wallet apps in our dataset.

No Permission Name # of Request (%)

1 CAMERA 399 (87.3%)
2 WRITE EXTERNAL STORAGE 334 (73.1%)
3 READ EXTERNAL STORAGE 268 (58.6%)
4 INSTALL PACKAGES 146 (31.9%)
5 READ PHONE STATE 97 (21.2%)
6 ACCESS COARSE LOCATION 96 (21.0%)
7 ACCESS FINE LOCATION 96 (21.0%)
8 RECORD AUDIO 82 (17.9%)
9 READ CONTACTS 68 (14.9%)
10 GET ACCOUNTS 54 (11.8%)

8 I Wayan Budi Sentana, Muhammad Ikram, and Mohamed Ali Kaafar

Table 1 shows the 10 most dangerous permissions requested by cryptocur-
rency wallet apps. We detected that 399 (87%) apps request permission to access
the device’s camera to activate the camera during the user document verifica-
tion process including taking a photo of a legitimate government-issued ID and
scanning the wallet address in the form of a QR code. We also found 82 (18%)
apps requesting voice recordings as shreds of evidence that users give consents
for them to store user data.

0 10 20 30
of Permission

0

25

50

75

100
EC

DF

Dangerous
Normal
Signature
Customized

Fig. 3: Empirical cumulative distribution function (ECDF) of permission per app
across various categories as per Android Official API [9].

On average, each app requests 18 permissions, which consist of 4 dangerous
permissions, 7 customized permissions, 6 normal permissions, and 1 signature
permission. Specifically, Fig. 3 shows that 95% of apps requesting less than 5
signature permissions, 65% of apps request 3 to 7 dangerous permissions, and
65% of apps request 5 to 10 normal permissions. Surprisingly, 35% of apps re-
quested 5 to 20 customized permissions, and 15% of apps requested more than
20 customized permissions. This trend indicates a shift in the mobile program-
ming paradigm from traditional Android libraries to reproducible third-party
libraries.

Further analysis of customized permissions found that out of 3,212 cus-
tomized permissions requested by 353 apps, there are 236 distinct permission
names of this permission type. From permission names, there are 12 permissions
embedded by more than 100 apps. Table 9 lists the top 20 requested third-party
permissions used to support third-party libraries embedded by apps. Most of
these permissions are useful in the push notification process from third-party
cloud facilities to the device installing the app.

Another worth noting in apps’ permission analysis is the compliance of apps’
developers to the use of permission agreements and the potential security risk to
certain apps. We found that 26 apps request for android.permission.MOUNT -

UNMOUNT FILESYSTEMS (cf. Table 2. According to [10], this permission can be
used to mount and unmount external storage such as SSD cards. However, this
permission is only for pre-installed applications or applications that were already

Title Suppressed Due to Excessive Length 9

installed when the device was distributed. In addition, we discovered that 8 apps
request android.permission.DOWNLOAD WITHOUT NOTIFICATION (cf. Table 2)
which allows the app to download any file without user consent. This can be
very dangerous if the app automatically downloads malicious applications into
the device. com.nexowallet and com.polehin.android are two out of eight
apps that requested this permission and those apps have been installed by more
than 1 million devices and have review scores of 4.6 and 4.2 respectively.

Table 2: (Un)Mount file system and download without notifications permissions
requested by the analysed apps.

Sensitive Permission # of Apps (%) Example App

MOUNT UNMOUNT FILESYSTEMS 26 (5.7%) com.bityard.us2
DOWNLOAD WITHOUT NOTIFICATION 8 (1.8%) com.burency.app

4.2 Third-party Libraries Penetration

We found a total of 59 distinct third-party libraries embedded in 391 apps. Due
to the limited list in our dictionary and the obfuscation mechanism adopted by
the apps, we were unable to detect third-party libraries in 66 apps (≈ 14% of
457 wallet apps). Depending upon their intended functionalities, we group the 59
distinct libraries into four main categories: Analytics, Ads & Tracker, Payment,
and Social Media libraries.

Table 3: Dominant libraries grouped by the library category. (G. : Google)

No Analytics No Ads&Tracker
Names Count (%) Names Count

1 G. Analytic 61 (3.7%) 1 G. Ads 259 (15.8%)
2 Mixpanel 20 (1.2%) 2 Appsflyer 66 (4.0%)
3 adjust 15 (0.9%) 3 Tencent 25 (1.5%)
4 Umeng 11 (0.7%) 4 AppLovin 4 (0.2%)
5 Flurry 10 (0.6%) 5 Appboy 4 (0.2%)

No Payment No Social Media
Names Count Names Count

1 Squareup 166 (10.1%) 1 Facebook 198 (12.1%)
2 Intuit 8 (0.5%) 2 Twitter 10 (0.6%)
3 Paypal 1 (0.1%) 3 Weibo 3 (0.2%)
4 Urbanairship 1 (0.1%)

Table 3 shows the dominance of Google Analytics and Google Ads for the
Analytics and Ads & Tracker categories which are embedded in 61 and 259 apps,
respectively. As for the Payment and Social Media categories, Squareup and
Facebook are the most popular and adopted in 166 and 198 apps, respectively.

According to data distribution, the adoption rate of third-party libraries by
cryptocurrency wallet apps is considered to be low. Particularly, Table 4 shows
that 172 (37.6%) apps did not adopt Ads & Tracker libraries whereas other 270

10 I Wayan Budi Sentana, Muhammad Ikram, and Mohamed Ali Kaafar

(59.1%) apps adopted only 1 or 2 libraries, 13 (2.8%) apps adopted from 3 to
5 libraries and 2 (0.2%) apps adopted more than 5 libraries. This adoption rate
is much smaller than the adoption of Ads & Tracker libraries in other genres
of apps, for example, measurement by Sentana et al., [33] found that 22.2% of
Android health-related apps embed at least five different third-party libraries,
or in the measurement results by [36] who found more than 43.0% of non-mobile
health apps in their corpus embed more than 5 Ads & Tracker libraries. The
two apps that embed the most Ads & Tracker libraries in their package are
network.xyo.coin and com.callsfreecalls.android, with 10 and 9 libraries,
respectively and they have been installed more than 1 million times.

Table 4: Distribution of third-party libraries embedded by the analyzed apps.

Of Libraries Analytics Payment Social Media Ads & Trackers

1 94 (20.6%) 166 (36.3%) 194 (42.5%) 211 (46.2%)
2 12 (2.6%) 5 (1.1%) 7 (1.5%) 59 (12.9%)
3 1 (0.2%) 0 (0.0%) 1 (0.2%) 10 (2.2%)
4 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (0.4%)
5 0 (0.0%) 0 (0.0%) 0 (0.0%) 1 (0.2%)
6+ 0 (0.0%) 0 (0.0%) 0 (0.0%) 2 (0.4%)

The adoption rate of the other three types of libraries is less than the adoption
rate of the Ads & Tracker library. There are only 202 (44.2%) apps that adopted
1 to 3 Social Media libraries, 171 (37.4%) adopted 1 to 3 Payment libraries,
and only 107 (23.4%) apps adopted 1 to 3 Analytics libraries. This phenomenon
reinforces the exposure made by [25] where advertising is not the main source of
income in the cryptocurrency wallet ecosystem. Most apps support their opera-
tional costs through affiliate fees. In this model, the cryptocurrency wallet apps
accommodate the crypto swap process from the cryptocurrency swap service
provider. Some of the profits obtained by the service provider are from the dif-
ference in currency values which are shared with apps. Another business model
is to make cryptocurrency wallets become a part of cryptocurrency exchange
apps and get a split fee from the exchange transaction. In addition to the busi-
ness model, some apps gain funding from the Initial Coin Offering (ICO) for
cryptocurrency wallets that are integrated with certain coins.

Apart from the four types of third-party libraries, we also analyzed the ex-
istence of suspicious Cross-Library Data Harvesting (XLDH) libraries in cryp-
tocurrency wallet apps. We found that 13 (2.8%) apps embed XLDH libraries
in their package as shown in Table 5. Particularly, com.yandex.metrica li-
brary, which is embedded by 4 apps, extracts the Google Advertising id,
Android ID, and user MAC address and then exfiltrates the information to
https://startup.mobile.yandex.net. Similar information was also extracted
by com.leanplum, cn.sharesdk, com.inmobi. More detailed information is
harvested by com.umeng.socialize which includes AccessToken and user data
(ID/name/link/photo) on several social media platforms including Facebook,
Twitter, Dropbox, Kakao, Yixin, Wechat, QQ, Sina, Alipay, Laiwang, Vk, Line,
and Linkedin.

Title Suppressed Due to Excessive Length 11

Table 5: Crypto Wallet embedding Cross-Library Data Harvesting (XLDH) Li-
braries

No App ID XLDH Library Name

1 app.hodlify com.yandex.metrica
2 co.bitx.android.wallet com.leanplum
3 com.evraon.trading com.yandex.metrica
4 com.ixx android cn.sharesdk
5 com.okinc.okex.gp cn.sharesdk
6 io.bincap.exchange com.yandex.metrica
7 network.xyo.coin com.inmobi
8 com.btcc.mobiwallet cn.sharesdk
9 com.zengo.wallet com.leanplum
10 com.sixpencer.simplework cn.sharesdk
11 com.fox.one com.umeng.socialize
12 com.beecrypt.beecrypthd com.yandex.metrica
13 com.hconline.iso cn.sharesdk

4.3 Malware Presences

Based on VirusTotal results, we found 25 apps detected containing mal-
ware. Specifically, 18 apps were detected by 1 antivirus engine, 3 apps
were detected by 2 antivirus engines, and 4 apps were detected by
more than 3 antivirus engines. Moreover, 9 antivirus engines detected
malware on com.top1.group.international.android, 8 engines detected
malware on com.jex.trade, and 7 and 4 engines detected malware on
com.legendwd.hyperpayW and im.token.app, respectively.

We further cross-validate this analysis results with the anti-analysis measure-
ment results in § 4.4. As we shall show later in § 4.4, there are four apps that
embed the Jiagu packer to encrypt the .dex file. In this measurement, there are
4 antivirus engines (i.e., Ikarus, Fortinet, ESET-NOD32, and MaxSecure) that
consistently detect the same malware in the four apps that embed Jiagu packer
in their packages.

4.4 Anti-Analysis Detection

Figure 4 depicts our analysis results of anti-analysis methods employed by wallet
apps. We discuss our analysis of the evasion methods in the following.

Manipulator. We found that 18 (3.9%) apps are marked as containing ma-
nipulator because the Dalvix Executable (.dex) files developed using dexmerge
compiler. Note that .dex file, which exists in each APK, is a byte-code file con-
verted from Java.class. Thus, it can be executed by the devices. Originally,
dex file is developed using dx or r8 compiler. APKiD tool will mark an app as
containing a manipulator if (i) the original .dex files of the app are modified
using a modification library such as dexmerge or (ii) .dex files are created from
reverse-engineered source code using dexlib library, which is commonly used by
decompiler tools such as a �pktool or smali [31,30]. APKiD tool identifies the ma-
nipulator by analyzing the change history in Map Ordering Type of the .dex files

12 I Wayan Budi Sentana, Muhammad Ikram, and Mohamed Ali Kaafar

0 100 200 300 400
of Apps

Anti Disassembly

Packer

Manipulator

Obfuscator

Anti Debug

Anti VM

Pa
ra

m
et

er

Fig. 4: Anti-Analysis mechanisms employed by the analysed wallet apps.

since the code sequence resulted from original .dex compiler, dexmerge, dexlib or
dex2lib is different [13].

Anti Virtual Machine. We detected 429 (93.8%) apps adopting anti-
virtual machine (Anti-VM) analysis in their package. An Anti-VM is a mecha-
nism to detect whether the apps are executed on an emulator or real device. The
goal is to impede reverse-engineering tools and techniques so the reverse engi-
neer cannot get the source code easily. The most common mechanism to check
whether the device is emulated [27] is to analyze build.prop file containing
a list of Build API methods, including Build.Fingerprint, Build.Hardward,
and Build.Device and other device’s properties. An alternative method is to
check the Telephony manager which contains fixed API values for Android emu-
lators including getNetworkType(), getNetworkOperator(), getPhoneType()
and other network-related properties.

Anti Debug. We found 278 (60.8%) apps leveraging anti-debugging tech-
niques to disrupt the reverse engineering of their source code. The anti-debugging
technique ensures that the apps are not running under a debugger or changing
the app’s behavior when running under the debugger mode. Android provides
two levels of debugging and anti-debugging protocol [26]. The first level of debug-
ging can be conducted in communication protocol between Java Virtual Machine
and debugger using Java Debug Wire Protocol (JDWP). We can identify anti-
debugging by verifying if the setup includes the debuggable flag in Application-
Info or by checking the timer checks routine. While the next level of anti-debug
technique is to conduct traditional debugging by using ptrace in Linux system
call. In this research, we found all of the 287 cryptocurrency wallets activating
the debuggable flag of Debug.isDebuggerConnected() check, which is part of
JDWP anti-debug level.

Obfuscator. Overall, we found 70 (15.3%) apps leveraging obfuscation tools
in their package. Of that number, 3 apps obfuscated by Dexguard [14], 3 apps
obfuscated by Arxan [11]. obfuscation is a process of concealing the original
source code, binary code, or byte-code into an obscure set of characters, and 6
apps obfuscated by Clang [35]. Dexguard is a proprietary Android obfuscation
tool that provides multi-layer protection against the static and dynamic analysis
of byte-code, manifest, and all other resources included in distribution packages.
While Dexguard obfuscated the byte-code level of Android Apps, Arxan and

Title Suppressed Due to Excessive Length 13

Clang are categorized as Low-Level Virtual Machines tools that obfuscated the
binary code level of Android Apps.

Anti Disassembly. This technique prevents the reverse engineer from dis-
assembling the byte-code into higher-level code such as Java or Smali. The most
popular anti-disassembly mechanism in Android is by developing part of the code
segment in C or C++ using Native Development Kit (NDK) [34]. NDK provides
platform libraries to manage native activities and access physical device compo-
nents [7]. NDK uses CMake as a native library compiler that creates a different
byte-code structure compared to the code written in Java or Kotlin. Hence, it
impedes common Android tools such as Apktool or Smali to disassemble the
byte-code. It required an advanced reverse engineer familiar with ARM proces-
sor architecture, Assembler language, Java Native Interface (JNI) convention,
and Application Binary Interface (ABI) compiler to decompile the byte-code.
More advanced techniques are used by malware developers to evade disassem-
bly tools explained by [24]. The technique leveraging jmp and call commands in
byte-code level to direct the instruction flow to a certain location with a constant
value, or direct the flow to the same target memory location. This technique will
produce a false listing of source code when it disassembles using a decompiler
tool. We found 4 apps leveraging the anti-disassembly techniques. Analysis of
those apps returns the value of “Illegal class name”, indicating the decompiler
result violates the standard structure of Java or Kotlin.

Packer. Initially, Packer was created to protect intellectual property in the
form of source code on Android apps. These tools prevent third-parties from
analyzing source code or doing reverse engineering. Packer works by encrypting
the .dex files in the Android package and storing the encryption results in a
secure new block architecture. Unlike the obfuscator which will be decrypted
when executed on the device, the packer is remained stored in the packer block
and uses unpacker when it will be executed on the device. However, commercial
packers are often used by malware developers to hide malicious codes [12,5]. We
found that 7 (1.5%) apps use packers, of which 4 apps embed Jiagu packer, while
the three remaining apps use Ijiami, SecNeo, and Yidun packers. Note that the
wallet apps using Jiagu packer are also detected as malware by VirusTotal (cf.
§ 4.3).

5 Dynamic Analysis Result

We investigate the runtime and network behavior of the cryptocurrency wallet
apps. Out of 457 tested apps, we successfully captured the network traffic of 391
apps. The reasons that we failed to capture traffic of 66 apps (i.e., pcap files
are empty) include the app navigation process crashing and the app installation
failure.

5.1 Securing Network Requests

To secure communication from in-path attackers, apps leverage transport layer
security (TLS) and HTTPS. For each wallet app, we filter TCP flows in network

14 I Wayan Budi Sentana, Muhammad Ikram, and Mohamed Ali Kaafar

traces (saved in pcap file), to identify whether the connection establishment
between the app and the Internet is over TLS. We also identify the TLS version,
cipher name, and the HTTP version used in the apps’ traffic. We also filter
network traffic for HTTP(S) requests. We found that 261 (66.7%) apps have
established TLS for all of their traffic where they use TLSv1.2 and/or TLSv1.3
in their traffic, 148 (37.8%) apps include traffic that was not over TLS when
they use HTTP scheme in their traffic and 9 (2.3%) apps do not use TLS in all
of their traffic. Of the 391 apps that we successfully captured network traffic, 148
(37.8%) apps transmitted some of their traffic over unencrypted HTTP protocol
which could potentially result in in-path modification and traffic analysis of
transactions made by wallet apps.

5.2 Sensitive Data Aggregation and Sharing

We observe whether an app collects and transmits data related to users’ infor-
mation and wallet information in their network traffic. Based on the captured
traffic dumped into the .har file, we extract the HTTP request package’s header
and payload and find whether user information is in the app’s traffic.

Data Aggregation Practices. For each app, we extract all HTTP re-
quests with the POST method and inspect the postData field of the package’s
header to identify data related to the user, credential, device, location, and
wallet information. If so, the app is claimed to collect personal information as
well as wallet information. In order to detect if an app collects user informa-
tion, we match predefined keywords with the key values in the postData field.
For any matching keywords, we claim that the app collects user information.
A similar strategy is applied to the detection of collecting device information,
credential information, location information, and wallet information. To define
related keywords to each information category, we first scan all unique keys
in the postData field of all apps’ traffic. We then search for related keywords
for each information category. As the keys used in postData field to refer to
the same information are not exactly matched. We carry all possible keywords
for each information category to ensure that we do not miss any app that col-
lects a piece of given information. For instance, the predefined keywords for
user information are determined based on the list of all unique keywords we
scanned for from all apps’ traffic. We search for all keys in that list that con-
tain the string ‘name’. After that, we manually filter out keywords that include
‘name’ but do not refer to personal information. Finally, we obtain a prede-
fined keyword list related to user information including ‘first name’, ‘last name’,
‘surname’, ‘Username’, ‘email’, ‘account name’, ‘username’, ‘name’, ‘partner -
name’, ‘given name’, ‘named user id’, ‘user name’, ‘full name’, ‘emailAddress’,
‘emailToken’, ‘email id’, ‘fullname’. Similarly, we obtain the keywords for device
information, credentials, location, and wallet information. We provide details of
our keywords for each user-related information category in Appendix B.

Based on the apps’ traffic and our predefined keywords, we identify a number
of apps that collect personal information as well as wallet information. Table 6

Title Suppressed Due to Excessive Length 15

shows the identified number of apps (out of 391 apps) that collect a given infor-
mation.

Table 6: Number of apps collecting personal and wallet information.

Collected Apps Collecting Apps Sharing Apps Sharing Sharing via
Attributes Info with FP with TP HTTP

User Info 67 (17.1%) 10 (2.5%) 57 (14.6%) 4 (1.0%)
Credential Info 50 (12.8%) 9 (2.3%) 41 (10.5%) 4 (1.0%)
Device Info 83 (21.2%) 5 (1.2%) 78 (19.9%) 5 (1.3%)
Location Info 16 (4.1%) - 16 (4.1%) -
Wallet Info 44 (11.2%) 2 (0.5%) 42 (10.7%) -

Sharing Sensitive Data with Third-Parties. For all apps that collect
personal information and wallet information, we further inspect the requested
URL in the URL field of the packet’s header to identify if the collected data is
shared with third parties.

We also identified apps that share the collected information with TPs via
the HTTP scheme. Table 6 also shows the identified number of apps that share
collected personal information and wallet information with third parties and apps
that share these data using the HTTP scheme. Specifically, we found that 15 apps
(e.g., com.btcc.mobiwallet and com.coinburp.mobile) share user credentials
and device information with third-parties via HTTP.

5.3 Third-party Domain Request

We identify third-party domains in the app traffic from the captured pcap file.
For each analysed app, we capture all requested domains from har file and clas-
sify requested domains into first-party domains and third-party domains (i.e.,
Domains that do not belong to apps’ developers). To determine apps’ commu-
nication with third-parties, we leveraged filter lists: EasyList [1] an advert block
list, and EasyPrivacy [2] a supplementary block list for tracking, to filter advert
and tracking related third-party domains requested by the tested apps.

113 (28.9%) apps requested more than 10 unique domains during the app
execution. Among them, the app with the handle name of io.atomicwallet
requested 66 different domains. Individually, 70 (17.9%) apps requested one
third-party domain, 338 (86.4%) apps requested more than two third-party
domains and 72 (18.4%) apps requested more than 10 third-party domains.
The app with the handle name of com.paymintlabs.paymint requested 44
different third-party domains. Top 5 third-party domains firebaseinstal-

lations.googleapis.com, google.com, crashlytics.com, rqmob.com and
facebook.com were found to be requested by 169 (43.2%), 133 (34%), 91
(23.2%), 87 (22.2%), and 76 (19.4%) apps, respectively.

16 I Wayan Budi Sentana, Muhammad Ikram, and Mohamed Ali Kaafar

6 Privacy Policy Compliance and User Review Results

6.1 Privacy Policy Analysis

Upon the privacy policies extraction, we managed to extract 327 privacy poli-
cies and failed to extract 130 privacy policies due to several reasons as listed
in Table 10. 31 (6.8%) cryptocurrency wallet apps provide an untraceable link
for their privacy policy in Play Store content page information, while 17 (3.7%)
cryptocurrency wallet apps did not provide any link to their privacy policy doc-
uments. The result from privacy policy extraction is then used in the following
analysis:

Compliance to Provide Privacy Policy Link. As a part of our first analysis,
which is related to the developer compliance to provide a privacy policy link,
we used the extraction result and exclude several reasons for failures, such as
HTTP error 403 and HTTP error 503 which is used by the server as a part
of the defense against Denial of Service (DoS) attack (cf. Table 10). We also
exclude several links that can be traced if it navigated manually by humans to
reach privacy policy such as the HTTP error 104 and HTTP error 111 as well
as SSL ERROR BAD CERTIFICATE DOMAIN. And for the last, we exclude the apps
that are no longer available in Play Store. Hence, in total Overall, we found 87
(19.0%) cryptocurrency wallet apps failed to provide a privacy policy on Google
Play.

App’s adherence to information sharing policy. This analysis consists of two
steps: classification of the app’s privacy policy for collecting user information
and validation of sharing the collected information with third-parties (TP). For
each app, we first classify the app’s privacy policy as true or positive if they
declare or claim that the apps share the user information with the TPs, while
the app’s privacy policy is labeled as false or negative if they do not declare to
share the user information to the TPs. Second, we cross-validate the apps that
are labeled to be false to the third-party libraries embedded by corresponding
apps and cross-validate those apps to the third-party domains accessed during
the app’s runtime. We assume that the cryptocurrency wallet apps violate the
privacy policy in terms of sharing user information with the third-parties if they
do not declare it in privacy policies while embedding tracking libraries (§ 4.2) or
they send user information to the third-party domains (§ 5.3).

To automatically detect if the app claims to share user information with
TPs, we rely our classification on an existing corpus of privacy policies [42]
annotated by legal experts. This corpus contained 213 and 137 privacy policies
labeled as positive and negative, respectively. However, the positive annotation
in this corpus is only given for the policy that contains very specific information
sharing and annotates the general information sharing phrases to the negative.
For instance, specific phrases such as “We share your email address with third
parties” would be annotated as positive, while general phrases such as “We share
your information with third parties” would be labeled as negative. Hence, we re-
label this corpus by removing privacy policies that contain general information
sharing in the negative class. After this step, 35 privacy policies remain in the

Title Suppressed Due to Excessive Length 17

negative subset. To avoid an imbalance of class data, we reduce the size of the
positive subset and make our new corpus containing 68 and 35 privacy policies
labeled as positive and negative, respectively. We then train a Support Vector
Machine (SVM) classification model based on our new corpus.

Since our classification model is trained in English-based language, we then
exclude non-English privacy policies from 327 (out of 457) cryptocurrency wallet
apps from which we could extract their privacy policy text. We found that 60 (out
of 327) privacy policies were written in a non-English language, including binary
texts. We then classify these 267 privacy policies using our trained classification
model. As a result, we found 93 privacy policies classified as false meaning that
the corresponding apps did not declare or claim to share user information with
TPs, and 175 privacy policies classified as true indicating that the apps declare
to share user information with the TPs.

We then cross-validate 93 apps which corresponding privacy policy apps la-
beled as false to the apps adopting third-party libraries in Sec. 4.2. We then
marked the apps that embed at least one third-party library as apps that failed
to adhere to privacy policies related to sharing users’ information with third
parties. As a result, we found 78 (17.0%) cryptocurrency wallet apps fall into
this category.

We examine 93 apps that do not claim to share user information with third
parties (i.e., being labeled as false in the privacy policy classification) by investi-
gating their network traffic during execution time (§ 5.2). We found 26 apps that
did not declare to share user information with the TPs had shared user infor-
mation including personal information, device information, credentials, location,
and wallet information. Details of our results are shown in Table 7. Consequently,
we also marked these apps as violating privacy policy in terms of sharing user
information with TPs.

Table 7: Apps sharing user information with TPs w/o claiming in privacy policy

Attribute # Apps Shared Information

Personal Info 4 (4.3%) ‘username’, ‘surname’, ‘email’, ‘name’

Device Info 11 (11.8%) ‘deviceType’, ‘device uuid’ ‘deviceData’, ‘device name’
‘deviceFreeSpace’, ‘device id’ , ‘device token’, ‘deviceModel’

Credentials Info 4 (4.3%) ‘password’, ‘password score’

Location Info 2 (2.2%) ‘locale’

Wallet Info 5 (5.3%) ‘primary public key’, ‘branch key’, ‘wallet version’
‘backup public key’, deployment key’

6.2 User Reviews Analysis

We use users’ negative comments (reviews) to capture the perceptions and con-
cerns about the security and privacy features of wallet apps. Our reasoning to
focus our analysis on negative reviews, 1- and 2-star reviews appearing on Google
Play, for popular apps is that any serious concern exposed by a user should re-
ceive a negative review. Overall, we obtained 673,424 reviews corresponding to

18 I Wayan Budi Sentana, Muhammad Ikram, and Mohamed Ali Kaafar

403 (88.2%) wallet apps. We noted that 54 (12.8%) apps have no user reviews
while 78.5% (359) of the analyzed apps have at least one negative comment with
a total of 175,564 or 26.1% of total reviews.

For further analysis, we process negative reviews by grouping them based on
the type of complaint. We detect the complaint type in each negative review
based on the occurrence of keywords in the review and group it into six cat-
egories, including fraudulent, bugs, authentication, security, usability, ads, and
tracker. For example, the appearance of the word “scam”, “fake” or “liar” in
a negative review indicates a complaint about fraudulent activities. Similarly,
reviews containing keywords such as “bugs” or “error” into Bugs complaint.
More details about the complaint category and the keywords mapping can be
seen in Table 8.

Table 8: Number of User Complaint per Category as well as the correlated apps.
Percentage in ”# of Complaint” using the total negative review as the denomi-
nator.

Category # of Complaint (%) #of Apps(%) Keywords

Fraudulent 50,628 (28.8%) 287 (62.8%) ’scam’,’fake’,’money’,
’liar’,’purchase’,’payment’,
’credit card’,’debit card’,
’cash’,’manipulation’

Bugs 22,742 (13.0%) 256 (56.0%) ’bug’,’error’,’crash’,’update’,
’upgrade’,’not responding’,
’freeze’,’stuck’

Authentication 37,791 (21.5%) 262 (57.3%) ’verification’,’verify’, ’verif’
’verified’,’account’,
’notification’,’login’,’register’

Security 4,692 (2.7%) 176 (38.5%) ’security’,’secure’,’hack’,’bot’
’hacking’,’hacker’,’insecure’

Usability 11,599 (6.6%) 213 (46.6%) ’confuse’,’confusing’,’bad’,
’rubbish’,’slow’,
’junk’,’user interface’

Ads and 772 (0.4%) 102 (22.3%) ’ads’,’video ads’,’tracker’,
tracker ’intrusive ads’,’massive ads’

’advert’,
’advertisement’

Table 8 also shows the number of complaints and their percentage of total
negative reviews grouped by category. Most of the users complaints are related
to fraud with 50,628 (22.5%) complaints, followed by authentication with 37,791
(14.9%), bugs with 22,742 (12.3%), usability with 11,599 (4.5%), security with
4,692 (2.6%), and ads and tracker with 772 (0.6%). This result is surprising as we
expect ads and trackers to get a large proportion of complaints considering that
the corpus of the analyzed wallets apps are free apps. However, after looking in
more detail at the business process of wallets and considering the low adoption of
third-party ads and tracker libraries discussed in § 4.2, it is acceptable that ads
and trackers are not a “big player” in wallet apps. To observe the distribution
of complaint categories in cryptocurrency wallet apps, we calculate the ratio

Title Suppressed Due to Excessive Length 19

0 20 40 60 80 100
Complaint Ratio (%)

40

50

60

70

80

90

100

EC
DF

Fraud
Bugs
Authentication
Security
Usability
Ads and Tracker

Fig. 5: ECDF of user complaints ratio per app across various categories.

of complaints occurrence per category to the total negative reviews for each
app. This is to accommodate gaps between the apps with a large number of
reviews and a small number of reviews. For example, com.coinbase.android
has a fraudulent ratio of 32.8% calculated from 10,210 fraudulent complaints
divided by 31,107 negative reviews owned by the app.

Based on this calculation, fraud still dominates compared to other complaint
categories. There are 20 apps (4.4%) that have more than 50% fraud complaints.
All of these apps have a totally negative review below 100 and 15 apps have a
total review (positive, normal, and negative) under 100. Figure 5, depicts the
distribution of the ratio of negative reviews to the total number of reviews across
various categories.

We also cross-validated the negative review ratio of VirusTotal’s detection
results on malicious apps, as shown in Table 11. As a result, of the 25 apps that
were detected as malicious by the VirusTotal, 8 apps have received negative
ratios above 25% where 3 of them have been installed more than 100K times.

7 Related Work

Recently, few work studied the security and privacy risks of Android cryptocur-
rency wallet apps. For instance, He et al. [15] discovered threat vectors of cryp-
tocurrency wallet apps and studied the security weaknesses of both the Android
system and cryptocurrency wallets. However, this work provides an assessment
of just two apps.

Hu et al. [18] explored the security features of the 10 most popular Bitcoin
wallet applications and discovered three security vulnerabilities of Bitcoin wallet
applications including privacy leakage, spamming and financial loss and demon-
strated corresponding proof-of-concept attacks. Sai et al. [29] examined the se-

20 I Wayan Budi Sentana, Muhammad Ikram, and Mohamed Ali Kaafar

curity issues of 48 commonly used Android cryptocurrency wallet applications.
Nevertheless, this work mainly focuses on security vulnerabilities rendered by
requested permissions. Li et al. [22] studied the security risks of 8 common An-
droid cryptocurrency wallet apps by examining requested permissions, backup
files, Android clipboard, and accessibility service.

Biryukov and Tikhomirov [4] proposed a security and privacy analysis
method based on clustered transactions on timing analysis for Bitcoin, Dash,
Monero, and Zcash cryptocurrencies. The measurement relies on four main
parameters including information Leak to external storage, XSS attacks via
Javascript in WebView, Insecure connection, and information leak into logs.
Uddin et al [37], proposed Horus, a security assessment framework for Android
Cryptocurrency apps that includes static and dynamic analysis. Static analysis
in Horus focuses on the security assessment based on the API calls while dy-
namic analysis was only used to profile the app’s structure and to identify the
key location storage during the runtime.

In contrast, our work provides a large-scale comprehensive analysis of the
security and privacy features of 457 Android cryptocurrency wallet applications.
The static analysis in our study consists of several security and privacy param-
eters that include permission, app packaging, anti-analysis adoption, the use of
third-party libraries, and malware presence. While the dynamic analysis in our
study conducted the identification of standard security practices and capture the
network traffic to seek the potential information leakage to the third party. This
study also provides analysis results from the user’s point of view and potentially
of developer compliance related to the privacy policy.

8 Conclusion

Unlike most free apps which use ads to monetize their apps, wallet apps use split
or sharing fees to support their business process. Hence, it gives a unique char-
acteristic to the apps’ structure in terms of third-party libraries’ adoption and
permission requests. In addition, most wallet apps also utilize third-party cloud
infrastructure, especially to support push notification facilities, which causes the
adoption of third-party libraries in this regard to be large. The adoption of this
third-party library is helpful in accelerating application development, but on the
other hand, it also leaves security and privacy issues for users.

In this study, we found several permission requests that are very dangerous
for users and also the adoption of a malicious library adopted by wallet apps. The
adoption of anti-analysis techniques by wallet apps has also led to a malware-
detecting issue by a number of antivirus engines. We also found several violations
of the privacy policy agreement between the developer and the user by the
wallet apps. Thus, we expect the results of this assessment would assist users in
observing the security and privacy of wallet apps on marketplaces such as the
Google Play Store. To foster future research, we release our code and dataset used
in this paper to the research community: https://walletapps2021.github.
io/.

https://walletapps2021.github.io/
https://walletapps2021.github.io/

Title Suppressed Due to Excessive Length 21

References

1. Easylist (2021), https://easylist.to/easylist/easylist.txt
2. Easyprivacy. https://easylist.to/easylist/easyprivacy.txt (2021)
3. BBVA: Blockchain - what are the differences between a digital cur-

rency and a cryptocurrency? (January, 2021), https://www.bbva.com/en/

what-are-the-differences-between-a-digital-currency-and-a-cryptocurrency/

4. Biryukov, A., Tikhomirov, S.: Security and privacy of mobile wallet users
in bitcoin, dash, monero, and zcash. Pervasive and Mobile Computing
59, 101030 (2019). https://doi.org/https://doi.org/10.1016/j.pmcj.2019.101030,
https://www.sciencedirect.com/science/article/pii/S1574119218307181

5. Caijun, S., Hua, Z., Sujuan, Q., Nengqiang, H., Jiawei, Q., Hongwei, P.: Dexx: A
double layer unpacking framework for android. IEEE Access (2018)

6. Chau, N., Jung, S.: An entropy-based solution for identifying android packers.
IEEE Access (2019)

7. Developer, A.: The android ndk: toolset that lets you implement parts of your app
in native code, using languages such as c and c++. (2020), https://developer.
android.com/ndk

8. Developer, A.S.: Shrink, obfuscate, and optimize your app (2020), https://

developer.android.com/studio/build/shrink-code

9. Developers, A.: Permissions overview: Android developers (2020), https://

developer.android.com/guide/topics/permissions/overview

10. Developers, A.: Android documentation - manifest.permission (2021),
https://developer.android.com/reference/android/Manifest.permission#

MOUNT_UNMOUNT_FILESYSTEMS

11. Digital.ai: Arxan: App code obfuscation. https://digital.ai/glossary/

app-code-obfuscation (2020), last accessed: 18/08/2021
12. Duan, Y., Zhang, M., Bhaskar, A.V., Yin, H., Pan, X., Li, T., Wang, X., Wang, X.:

Things you may not know about android (un)packers: A systematic study based
on whole-system emulation. In: NDSS (2018)

13. Fenton, C.: Building with and detecting android’s jack compiler (2016), https:
//calebfenton.github.io/2016/12/01/building-with-and-detecting-jack/

14. Guardsquare-Mobile-Application-Protection: Dexguard: Android app security -
protecting android applications and sdks against reverse engineering and hacking
(2020), https://www.guardsquare.com/en/products/dexguard

15. He, D., Li, S., Li, C., Zhu, S., Chan, S., Min, W., Guizani, N.: Security analysis of
cryptocurrency wallets in android-based applications. IEEE Network 34(6), 114–
119 (2020)

16. He, R., Wang, H., Xia, P., Wang, L., Li, Y., Wu, L., Zhou, Y., Luo, X., Guo,
Y., Xu, G.: Beyond the virus: A first look at coronavirus-themed mobile malware
(2020)

17. Hsieh, W.C., Engler, D.R., Back, G.: Reverse-engineering instruction encodings.
In: USENIX Annual Technical Conference, General Track. pp. 133–145 (2001)

18. Hu, Y., Wang, S., Tu, G.H., Xiao, L., Xie, T., Lei, X., Li, C.Y.: Security threats
from bitcoin wallet smartphone applications: Vulnerabilities, attacks, and counter-
measures. In: ACM CODASPY (2021)

19. Ikram, M., Kaafar, M.A.: A first look at mobile ad-blocking apps. In: IEEE NCA
(2017)

20. Ikram, M., Vallina-Rodriguez, N., Seneviratne, S., Kaafar, M.A., Paxson, V.: An
analysis of the privacy and security risks of android vpn permission-enabled apps.
In: ACM IMC (2016)

https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easyprivacy.txt
https://www.bbva.com/en/what-are-the-differences-between-a-digital-currency-and-a-cryptocurrency/
https://www.bbva.com/en/what-are-the-differences-between-a-digital-currency-and-a-cryptocurrency/
https://doi.org/https://doi.org/10.1016/j.pmcj.2019.101030
https://www.sciencedirect.com/science/article/pii/S1574119218307181
https://developer.android.com/ndk
https://developer.android.com/ndk
https://developer.android.com/studio/build/shrink-code
https://developer.android.com/studio/build/shrink-code
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/reference/android/Manifest.permission#MOUNT_UNMOUNT_FILESYSTEMS
https://developer.android.com/reference/android/Manifest.permission#MOUNT_UNMOUNT_FILESYSTEMS
https://digital.ai/glossary/app-code-obfuscation
https://digital.ai/glossary/app-code-obfuscation
https://calebfenton.github.io/2016/12/01/building-with-and-detecting-jack/
https://calebfenton.github.io/2016/12/01/building-with-and-detecting-jack/
https://www.guardsquare.com/en/products/dexguard

22 I Wayan Budi Sentana, Muhammad Ikram, and Mohamed Ali Kaafar

21. Kruegel, C., Robertson, W., Valeur, F., Vigna, G.: Static disassembly of obfuscated
binaries. In: USENIX security Symposium. vol. 13, pp. 18–18 (2004)

22. Li, C., He, D., Li, S., Zhu, S., Chan, S., Cheng, Y.: Android-based cryptocurrency
wallets: Attacks and countermeasures. In: 2020 IEEE International Conference on
Blockchain (Blockchain). pp. 9–16. IEEE (2020)

23. Maier, D., Müller, T., Protsenko, M.: Divide-and-conquer: Why android malware
cannot be stopped. In: 2014 Ninth International Conference on Availability, Reli-
ability and Security. pp. 30–39. IEEE (2014)

24. Nair, R.: Techbliss - tutorial anti-disassembly techniques used by
malware (a primer) (2015), https://www.techbliss.org/threads/

anti-disassembly-techniques-used-by-malware-a-primer-by-rahul-nair.

804/
25. Ohayon, O.: Hackernoon - the business model of crypto-wallets (2018), https:

//hackernoon.com/the-business-model-of-crypto-wallets-89aeed8322dc
26. OWASP: Testing anti-debugging detection (mstg-resilience-2) - an-

droid anti-reversing defenses (2020), https://mobile-security.

gitbook.io/mobile-security-testing-guide/android-testing-guide/

0x05j-testing-resiliency-against-reverse-engineering, oWASP Mobile
Security Guide - Accessed: 18/01/2020

27. OWASP: Testing emulator detection (mstg-resilience-5) - an-
droid anti-reversing defenses (2020), https://mobile-security.

gitbook.io/mobile-security-testing-guide/android-testing-guide/

0x05j-testing-resiliency-against-reverse-engineering, oWASP Mobile
Security Guide - Accessed: 18/01/2020

28. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: Rage
against the virtual machine: hindering dynamic analysis of android malware. In:
Proceedings of the seventh european workshop on system security. pp. 1–6 (2014)

29. Sai, A.R., Buckley, J., Le Gear, A.: Privacy and security analysis of cryptocurrency
mobile applications. In: 2019 Fifth Conference on Mobile and Secure Services (Mo-
biSecServ). pp. 1–6. IEEE (2019)

30. Security, R.: Apkid and android compiler fingerprinting (2016), https://rednaga.
io/2016/07/30/apkid_and_android_compiler_fingerprinting/

31. Security, R.: Detecting pirated and malicious android apps with apkid
(2016), https://rednaga.io/2016/07/31/detecting_pirated_and_malicious_

android_apps_with_apkid/
32. Seneviratne, S., Kolamunna, H., Seneviratne, A.: A measurement study of tracking

in paid mobile applications. In: WiSec (2015)
33. Sentana., I.W.B., Ikram., M., Kaafar., M., Berkovsky., S.: Empirical security and

privacy analysis of mobile symptom checking apps on google play. In: Proceedings
of the 18th International Conference on Security and Cryptography - SECRYPT,
(2021)

34. SIMFORM: How to avoid reverse engineering of
your android app? (2015), https://www.simform.com/

how-to-avoid-reverse-engineering-of-your-android-app/
35. Source, G.: Android clang/llvm prebuilts (2020), https://android.

googlesource.com/platform/prebuilts/clang/host/linux-x86/+/master/

README.md, last accessed: 18/08/2021
36. Tangari, G., Ikram, M., Ijaz, K., Kaafar, M.A., Berkovsky, S.: Mo-

bile health and privacy: cross sectional study. BMJ 373 (2021).
https://doi.org/10.1136/bmj.n1248, https://www.bmj.com/content/373/bmj.

n1248

https://www.techbliss.org/threads/anti-disassembly-techniques-used-by-malware-a-primer-by-rahul-nair.804/
https://www.techbliss.org/threads/anti-disassembly-techniques-used-by-malware-a-primer-by-rahul-nair.804/
https://www.techbliss.org/threads/anti-disassembly-techniques-used-by-malware-a-primer-by-rahul-nair.804/
https://hackernoon.com/the-business-model-of-crypto-wallets-89aeed8322dc
https://hackernoon.com/the-business-model-of-crypto-wallets-89aeed8322dc
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05j-testing-resiliency-against-reverse-engineering
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05j-testing-resiliency-against-reverse-engineering
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05j-testing-resiliency-against-reverse-engineering
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05j-testing-resiliency-against-reverse-engineering
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05j-testing-resiliency-against-reverse-engineering
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05j-testing-resiliency-against-reverse-engineering
https://rednaga.io/2016/07/30/apkid_and_android_compiler_fingerprinting/
https://rednaga.io/2016/07/30/apkid_and_android_compiler_fingerprinting/
https://rednaga.io/2016/07/31/detecting_pirated_and_malicious_android_apps_with_apkid/
https://rednaga.io/2016/07/31/detecting_pirated_and_malicious_android_apps_with_apkid/
https://www.simform.com/how-to-avoid-reverse-engineering-of-your-android-app/
https://www.simform.com/how-to-avoid-reverse-engineering-of-your-android-app/
https://android.googlesource.com/platform/prebuilts/clang/host/linux-x86/+/master/README.md
https://android.googlesource.com/platform/prebuilts/clang/host/linux-x86/+/master/README.md
https://android.googlesource.com/platform/prebuilts/clang/host/linux-x86/+/master/README.md
https://doi.org/10.1136/bmj.n1248
https://www.bmj.com/content/373/bmj.n1248
https://www.bmj.com/content/373/bmj.n1248

Title Suppressed Due to Excessive Length 23

37. Uddin, M.S., Mannan, M., Youssef, A.: Horus: A security assessment framework
for android crypto wallets. In: Garcia-Alfaro, J., Li, S., Poovendran, R., Debar, H.,
Yung, M. (eds.) Security and Privacy in Communication Networks. pp. 120–139.
Springer International Publishing, Cham (2021)

38. Vidas, T., Christin, N.: Evading android runtime analysis via sandbox detection.
In: Proceedings of the 9th ACM symposium on Information, computer and com-
munications security. pp. 447–458 (2014)

39. VirusTotal: Multitude anti-virus engines (2021), https://www.virustotal.com/
gui/home/upload

40. Wang, J., Xiao, Y., Wang, X., Nan, Y., Xing, L., Liao, X., Dong, J., Serrano, N., Lu,
H., Wang, X., Zhang, Y.: Understanding malicious cross-library data harvesting
on android. In: USENIX Security Symposium) (2021)

41. Xia, P., Wang, H., Zhang, B., Ji, R., Gao, B., Wu, L., Luo, X., Xu, G.: Character-
izing cryptocurrency exchange scams. Computers & Security 98, 101993 (2020)

42. Zimmeck, S., Story, P., Smullen, D., Ravichander, A., Wang, Z., Reidenberg, J.,
Russell, N.C., Sadeh, N.: Maps: Scaling privacy compliance analysis to a million
apps. Proceedings on Privacy Enhancing Technologies 2019(3), 66–86 (2019)

A List of Anti-analysis Methods in Wallet Apps

We further explain the anti-analysis techniques used by the analyzed wallet apps.

– Manipulator. It is a tool or mechanism to modify .dex file and to re-
package the modified .dex file into new apps [30,31,13].

– Anti Virtual Machine. A technique [38,28,23] to detect and evade analysis
via sandboxes Android emulators or virtual machine.

– Anti Debug. It is a mechanism to prevent program analysis or debugging
activities [26].

– Obfuscator. Obfuscation is a process of concealing the original source code,
binary code, or byte-code into an obscure set of characters by encrypting or
changing the original code without omitting the functionality. The goal is
to impede the reverse engineering of the code by unauthorized parties. An
Obfuscator renames libraries, variables, methods and class names [8,14].

– Anti Disassembly. It is a technique aiming to prevent the extraction of
symbolic representations of the assembly code instructions from the APK of
an Android app [17,21].

– Packer. It is a techniques aiming at evading reverse engineering by encrypt-
ing the .dex file [5,12].

B Keywords for Personal Data Transmission Analysis

Device information keywords: deviceDescription, unidentified device, deviceID, de-
viceToken, deviceRegKey, rooted device, device model, device audio, deviceData, de-
vice token, deviceType, device brand, deviceId, devicetoken, kochava device id, device -
name, deviceFreeSpace, deviceOEM, deviceOS, device, device uuid, device os, device-
Height, device api, deviceInfo, device type, device time, deviceWidth, actual device -
type, deviceRm, deviceKey, deviceModel, device fingerprint id, device id, deviceMAC,
deviceId, deviceVersion, deviceFingerPrintId, device data

https://www.virustotal.com/gui/home/upload
https://www.virustotal.com/gui/home/upload

24 I Wayan Budi Sentana, Muhammad Ikram, and Mohamed Ali Kaafar

Credential information keywords: second password confirmation, password, pass-
word score, password confirmation, second password, password
Location information: localeIdentifier, location, locale language code, locale coun-
try code, locale, h region

Collected wallet information: devkey, walletId, previous deployment key, wal-

letAddress, key index, subwallets, coin, master public key, deployment key, wallet -

type, deployment key, gApikey, wallet version, bitcoin notification enabled, key, sort -

key, previous deployment key, temporary private key, primary public key, branch key,

public key, walletAddressIndex, wallet transaction notification enabled, wallets, coinId,

backup public key, wallet id, walletAddressNm, api key, walletID, pub key

Table 9: Top 20 customized and third-party permissions requested by the ana-
lyzed apps.

No Permission Name # of Request (%)

1 com.google.android.c2dm.permission.RECEIVE 307 (67.2%)
2 com.google.android.c2dm.permission.SEND 297 (65.0%)
3 .finsky.permission.BIND GET INSTALL REFERRER SERVICE 290 (63.5%)
4 .gms.auth.api.signin.permission.REVOCATION NOTIFICATION 113 (24.7%)
5 com.huawei.android.launcher.permission.CHANGE BADGE 102 (22.3%)
6 com.anddoes.launcher.permission.UPDATE COUNT 101 (22.1%)
7 com.sonyericsson.home.permission.BROADCAST BADGE 101 (22.1%)
8 com.sec.android.provider.badge.permission.WRITE 101 (22.1%)
9 com.sec.android.provider.badge.permission.READ 101 (22.1%)
10 com.majeur.launcher.permission.UPDATE BADGE 101 (22.1%)
11 com.htc.launcher.permission.READ SETTINGS 101 (22.1%)
12 com.htc.launcher.permission.UPDATE SHORTCUT 101 (22.1%)
13 com.huawei.android.launcher.permission.READ SETTINGS 96 (21.0%)
14 com.huawei.android.launcher.permission.WRITE SETTINGS 96 (21.0%)
15 com.sonymobile.home.permission.PROVIDER INSERT BADGE 96 (21.0%)
16 android.permission.READ APP BADGE 92 (20.1%)
17 com.oppo.launcher.permission.READ SETTINGS 91 (19.9%)
18 com.oppo.launcher.permission.WRITE SETTINGS 91 (19.9%)
19 me.everything.badger.permission.BADGE COUNT READ 90 (19.7%)
20 me.everything.badger.permission.BADGE COUNT WRITE 90 (19.7%)

Title Suppressed Due to Excessive Length 25

Table 10: Cause of Privacy Policy Extraction Failured.

No. Caused of Failured # of Apps (%)

1 404: Not Found 31 (6.8%)
2 403: Forbidden 19 (4.2%)
3 No Privacy policy link 17 (3.7%)
4 3: Temporary failure in name resolution 14 (3.1%)
5 2: Name or service not known 10 (2.2%)
6 No Metadata Found 9 (2.0%)
7 503: Service Temporarily Unavailable 7 (1.5%)
8 110: Connection timed out 3 (0.7%)
9 SSL: CERTIFICATE VERIFY FAILED 3 (0.7%)

10 522: Cloudflare times out 3 (0.7%)
11 SSL ERROR BAD CERT DOMAIN 2 (0.4%)
12 502: Bad Gateway 1 (0.2%)
13 104: Connection reset by peer 1 (0.2%)
14 526: Origin SSL Certificate Error 1 (0.2%)
15 403: Ip Forbidden 1 (0.2%)
16 500: Internal Server Error 1 (0.2%)
17 400: Bad Request 1 (0.2%)
18 308: Permanent Redirect 1 (0.2%)
19 307: server returned infinite loop 1 (0.2%)
20 111: Connection refused 1 (0.2%)
21 0: Error 1 (0.2%)
22 5: No address associated with hostname 1 (0.2%)
23 UNRECOGNIZED NAME ALERT 1 (0.2%)

Total 130(28.4%)

26 I Wayan Budi Sentana, Muhammad Ikram, and Mohamed Ali Kaafar

Table 11: List of cryptocurrency wallet apps that are considered as malicious by
users in Google Play reviews and by VirusTotal (AV-positive column). For each
cryptocurrency wallet app, the NR-Ratio represents the ratio of the number of
negative users’ comments to the total number of all users’ comments.

App ID NR-Ratio Installs Rating AV-positives

1 com.top1.group.international.android 1.0% 10000+ 4.7 9
2 com.jex.trade 43.1% 500000+ 4.1 8
3 com.legendwd.hyperpayW 10.4% 50000+ 4.8 7
4 im.token.app 25.2% 500000+ 4.1 4
5 com.vidulumwallet.app 13.8% 1000+ 4.2 2
6 com.remint.app 18.8% 10000+ 4.4 2
7 com.portto.blocto 23.8% 10000+ 4.3 2
8 roseon.finance 4.6% 10000+ 4.8 2
9 com.fox.one 2.9% 1000+ 4.8 1
10 com.studentcoin 63.5% 50000+ 4.4 1
11 one.mixin.messenger 15.8% 10000+ 4.5 1
12 net.ethylyte.com 2.9% 5000+ 4.5 1
13 augstrain.asn 33.3% 10+ 0.0 1
14 co.edgesecure.app 27.1% 100000+ 4.0 1
15 com.viabtc.pool 14.8% 100000+ 4.6 1
16 com.bitcoinglobal 50.0% 5000+ 0.0 1
17 com.crypto.multiwallet 18.1% 100000+ 4.4 1
18 com.friendst.strangr 80.0% 10000+ 3.8 1
19 com.quidax.app 32.4% 100000+ 3.7 1
20 com.digifinex.app 21.0% 100000+ 3.9 1
21 com.lingxi.bexplus 1.8% 50000+ 4.7 1
22 app.goodcrypto 15.5% 100000+ 4.5 1
23 com.enjin.mobile.wallet 9.5% 500000+ 4.6 1
24 com.holacoins.wallet 20.4% 50000+ 4.2 1
25 africa.bundle.mobile.app 9.9% 100000+ 4.5 1

	An Empirical Analysis of Security and Privacy Risks in Android Cryptocurrency Wallet Apps

