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Abstract. Prompt engineering is crucial for optimizing the perfor-
mance of Large Language Models (LLMs), yet it remains a man-
ual and resource-intensive process that requires multiple iterations of
trial and error. Current automated prompt enhancement approaches
face key challenges in preserving component relationships, manag-
ing computational requirements, and maintaining optimization trace-
ability. This paper introduces CARE (Comprehensive Analyzer &
REfiner), an LLM-based dual-agent framework that models prompt
enhancement as a staged transformation pipeline with explicit valida-
tion constraints. CARE tackles three fundamental challenges: prompt
decomposition with interleaved dependencies, component interfer-
ence in LLM processing, and semantic drift during refinement. The
framework enables reliable prompt enhancement in a single iteration
through systematic component extraction and rule-based transforma-
tions. Evaluation using established benchmarks demonstrates consis-
tent improvements across diverse LLM architectures.

1 Introduction

While LLMs demonstrate remarkable capabilities across diverse
natural language processing tasks, realizing their full potential re-
quires carefully crafted prompts. For non-experts, prompt engineer-
ing remains resource-intensive, requiring multiple trial-and-error it-
erations, especially for complex tasks that require precise instruction
following [8].

Automated prompt optimization has emerged as a crucial research
direction, with several approaches recently proposed. However, sig-
nificant challenges remain: (1) lack of systematic mechanisms to pre-
serve the relationships of the prompt components during optimiza-
tion, as seen in gradient-based [11] and evolutionary approaches [4];
(2) high computational cost from multiple LLM calls in iterative op-
timization [15]; and (3) insufficient traceability during optimization
[13}14], making it difficult to validate semantic preservation.

To address these challenges, we present CARE, an LLM-based
multi-agent frameworkﬂ that implements prompt optimization as a
staged transformation pipeline with validation constraints. Our the-
oretical contribution conceptualizes prompt refinement as a con-
strained graph transformation, where instructions are nodes with
typed dependency edges that must be explicitly preserved during en-
hancement. The framework addresses three challenges: (1) prompt
decomposition, where instructions contain interleaved components
with implicit dependencies; (2) component interference, where prox-
imity between instructions affects LLM processing; and (3) semantic
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drift, where refinements can alter original requirements.

CARE implements a dual-agent architecture with distinct analy-
sis and refinement phases. The analysis agent extracts components
and maps dependency relationships through three tiers of analysis
(instruction decomposition, constraint extraction, and linguistic pat-
tern identification). The refinement agent then applies systematic en-
hancements based on this structured representation, enforcing se-
mantic preservation through explicit validation rules. This approach
provides verifiable prompt improvement while addressing funda-
mental limitations in current research. Our contributions include:

1. A graph-theoretic model for representing prompts as directed de-
pendency networks that enables formal analysis of instruction re-
lationships and their dependencies.

2. A systematic prompt enhancement method that transforms un-

structured instructions into structured formats while preserving
semantic intent through dependency-aware transformation.

3. A validation methodology with formal verification criteria that en-

sures equivalence between original and refined prompts through
explicit constraint checking.

4. A dual-agent architecture that decouples prompt decomposition

from enhancement, enabling traceable transformations and verifi-
cation boundaries.

5. A deterministic refinement approach that achieves performance

improvements in a single processing cycle, eliminating the com-
putational cost of iterative optimization.
The effectiveness of this approach is demonstrated through rigorous
evaluation using established benchmarks [21} 9], showing consis-
tent improvements across different LLM architectures, particularly
for complex, multi-step instructions.

2 Related Work

Recent innovations in prompt optimization have emerged through
text-gradient approaches. LLM-as-Optimizer [18], TextGrad [12],
and OPRO [19] conceptualize prompt modifications as differen-
tiable operations, enabling optimization through estimated gradients.
While elegant mathematically, these methods typically employ itera-
tive optimization without explicit component tracking or dependency
preservation, and require multiple iterations to converge.

ProTeGi [11] employs a gradient descent-inspired approach using
LLMs for error feedback; however, its reliance on simple text-based
mutations fails to capture higher-level prompt structure and domain
knowledge, leading to inefficient exploration of the prompt space.
While PromptAgent [15] introduces strategic planning via Monte
Carlo Tree Search [6]], it lacks mechanisms for effectively incorpo-
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rating domain expertise and struggles with balancing multiple com-
peting objectives like instruction-following and linguistic quality.

EvoPrompt [4] applies evolutionary algorithms by represent-
ing prompts as gene sequences, but employs insufficiently gran-
ular genetic operations with limited modification transparency.
SAMMO [13] addresses these limitations through function graph
representations, introducing significant implementation complexity
and relying on structural assumptions that lack generalizability.

3 The CARE Framework

Figure[T]illustrates CARE’s sequential pipeline of agents, with each
agent building upon the output of its predecessor. The prompt en-
hancement process begins with the Analyzer agent, which extracts
structured prompt representations that capture atomic instructions,
their dependencies, and constraints through a three-tier analysis.
This analysis serves as the foundation for the Refiner agent that
implements targeted enhancements through a staged transformation
pipeline with explicit validation requirements. Both agents are imple-
mented using Claude 3.5 Sonnet [1]], leveraging its strong capabilities
in context comprehension and nuanced text generation.

3.1 Multi-Agent Architecture

In the following, we present our CARE framework, which consists
of a dual-agent architecture that addresses fundamental limitations in
monolithic prompt refinement systems. Our design enables explicit
validation boundaries and transformation transparency.

Formal Agent Architecture: The system consists of two distinct
agents, each operating on separate computational domains:

M= (A R,S) O]

where M represents the complete multi-agent system, A : P — S
is the Analyzer function mapping prompts from the prompt space P
to an intermediate structured representations or schema, S. Here, R :
S — P is the Refiner function mapping structured representations
to refined prompts.

The schema space S is formally defined as:

S=(I,G,C) )

where I represents the set of extracted atomic instructions, G =
(V, E,7) encodes the dependency graph with vertex set V' corre-
sponding to instructions, edge set E representing dependencies, and
typing function 7 : E — {E, E., E,} categorizing edges as se-
quential, conditional, or reference dependencies. The component C'
specifies the hierarchy of constraints comprising explicit, implicit,
and cross-instruction requirements.

Validation Architecture: The system implements three sequential
validation functions:

Vi:A— S(P.) (completeness verification) 3)
Vo:S(P.) = R (structural integrity) )
Vs: R— P (semantic preservation) 5)

At checkpoint V7, the Analyzer agent implements completeness ver-
ification (see Listing [3.1)), ensuring all instructions from P are iden-
tified and represented in S(P,). This checkpoint prevents informa-
tion loss during decomposition. Checkpoint V> operates at the agent
boundary (see Listing[3.7), validating schema conformance and de-
pendency graph consistency before processing. Checkpoint V3 ex-
ecutes post-refinement validation (see Listing [3.8), verifying that

P, preserves all semantic requirements through constraint checking
against original components.

3.2 Analyzer Agent

The Analyzer agent implements a systematic decomposition frame-
work that transforms unstructured prompts into explicit instruction
graphs with dependency tracking. Our approach builds on findings
that structured decomposition significantly improves LLM instruc-
tion following [[17]. Through a carefully engineered prompt template,
the framework performs multi-dimensional analysis across three key
aspects: instruction decomposition, constraint analysis, and linguis-
tic pattern analysis.

Instruction Decomposition: Drawing inspiration from program
dependency graphs [3], we guide the LLM to decompose complex
prompts into atomic components with explicit relationships. Given
an input prompt P, the model constructs a structured representation:

I(P) = {(ix, Dx, Ry)|k € [1,n]} (6)

where 75, represents atomic instructions identified by the LLM with
unique identifiers. To capture instruction relationships, we construct
a dependency graph G = (V, E') where vertices V represent instruc-
tions and edges E capture their dependencies. Dy encodes these re-
lationships through a typed edge system comprising sequential edges
(E) for strict ordering requirements between instructions (e.g., “first
do X, then Y"), conditional edges (E.) for execution dependencies
where one instruction’s output affects another’s execution path, and
reference edges (F,) for information flow between instructions that
share data or formatting requirements, where £ = F; U E. U E,.
Ry, defines the set of completion requirements and success criteria
that must be satisfied for instruction %, to be considered properly ex-
ecuted (e.g., formatting rules, numerical constraints).

The Analyzer is directed through a comprehensive prompt tem-
plate that systematically extracts structured representations as shown
in Listing 3.1] The dependency analysis, shown in Listing 3.2} ex-
tends this framework through enabling explicit tracking of instruc-
tion relationships and identification of potential interference points
where multiple dependencies intersect.

Listing 3.1: Core structure section of Analyzer prompt

Analyze the manually crafted prompt. Understand the
intent, context, and overall objective. Extract
these key elements as a JSON Dictionary:

1. Role/Identity: The persona the AI is asked to
emulate. Expected values: Specific role (e.g.,
"Data Scientist"), or "N/A" if not specified.

2. Context: Background information or setting for the
prompt. Expected values: Brief context
description, or "N/A" if not provided.

3. Objective: Clarify user’s objective (e.g.,
output, formatting rules, word limits).

4. Prompt/Query: The specific question/task asked.

concise

Constraint Analysis: Building on the dependency structure, the
framework implements a three-tier constraint analysis through a
carefully engineered prompt, shown in Listing [3.3] that guides the
Analyzer in identifying and categorizing requirements. Through sys-
tematic analysis, the LLM extracts explicit constraints that are di-
rectly stated in the prompt (e.g., “use less than 10 capital words",
“wrap in quotes"), implicit constraints derived from context (e.g.,
formatting consistency, logical ordering), and cross-instruction con-
straints that emerge from component interactions (e.g., maintaining
consistent style across sections). While dependency analysis focuses
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Figure 1: CARE Architecture: The Analyzer agent performs instruction decomposition, constraint analysis (explicit, implicit, and cross-
instruction), and linguistic pattern analysis. The Refiner agent implements contextual understanding, critical analysis, identifying refinement
targets, structured refinement, and constraint validation (presence verification, structural validation, and constraint adherence verification).

Example: Prompt refinement

Original prompt

Write a resume for Matthias Algiers. Use words with all capital letters to highlight key abilities. Make sure that words with all capital letters
appear less than 10 times. Wrap the entire response with double quotation marks.

Refined prompt

Role: You are a resume writer.

fewer than 10 such words.

relevant skills and certifications. 4. Use no more than 9 words with all

Objective: Your objective is to create a resume for Matthias Algiers that highlights key abilities using words with all capital letters, but with

Context: Matthias Algiers is a professional seeking a new job opportunity.

Instructions: 1. Gather relevant information about Matthias Algiers’ background, experience, and skills. 2. Identify key abilities to highlight
using words with all capital letters. 3. Structure the resume with the following sections: a. Header with Matthias Algiers’ name and contact
information. b. Professional Summary highlighting Matthias Algiers’ key strengths and qualifications. c. Work Experience detailing previous
job roles, responsibilities, and achievements. d. Education listing academic qualifications and degrees. e. Skills and Certifications showcasing

formatted, concise, and tailored to Matthias Algiers’ target industry or job role. 6. Wrap the resume content with double quotation marks.

capital letters to emphasize key abilities. 5. Ensure the resume is well-

Figure 2: Example demonstrating CARE’s prompt refinement process
format while preserving original requirements.

on execution relationships, constraint analysis captures specific re-
quirements and validation criteria for each instruction.

Linguistic Pattern Analysis: The framework implements system-
atic linguistic analysis, shown in Listing[3.4] to guide the agent in ex-
amining structural patterns and semantic relationships. At the syntac-
tic level, the LLM analyzes quantitative metrics including instruction
density (instructions per sentence), text complexity (through read-
ability scores and sentence length distribution), and specialized vo-
cabulary usage. At the semantic level, it examines instruction inter-
actions by identifying points where requirements overlap. This com-
plements the previous analyses by focusing on expression patterns
rather than execution dependencies or validation requirements.

The analysis, captured in a JSON schema, provides the Refiner
with a comprehensive understanding of the prompt’s operational de-
pendencies, validation requirements, and linguistic structure.

, showing transformation from an unstructured prompt to a structured

3.3 Refiner Agent

Given an analyzed prompt P, with its structured JSON represen-
tation, the refinement process executes through four stages. Figure
[2] shows an example of how an unstructured prompt is transformed
through this process into a structured format with explicit compo-
nents and preserved requirements.
Contextual Understanding: The first stage establishes a compre-
hensive refinement scope by processing the Analyzer’s output:
I(P,) = {(c, meta)|c € Components(P,)} )
where c represents atomic components (role, context, objective, in-
structions) and meta encapsulates their attributes, including source
text, constraints, dependencies, and formatting specifications. This
structured mapping enables precise transformation tracking while



Listing 3.2: Instruction decomposition section

5. Instructions_Analysis: ({
"atomic_instructions": [
{ "id":"unique identifier",
"text":"instruction text",

"type":"primary | secondary | conditional",
"dependencies": [
{ "instruction_id": "string",
"dependency_type": "sequential
conditional | reference",
"description": "string" }],
"interleaved_with": ["interleaved instructions
ids"],
"completion_requirements":["Requirements
list"]}1,
"dependency_graph":{"nodes": ["instruction ids"],
"edges":[{ "from":"source instruction id",

"to":"target instruction id",
"type":"dependency type"}]}}

Listing 3.3: Constraint analysis section

6. Constraints: {

"explicit": ["directly stated constraints"],
"implicit": ["constraints derived from context or
dependencies"],

"cross_instruction": [
{ "instructions": ["related instruction ids"],
"constraint": "shared constraint
description"}]}

preserving essential component relationships and validation require-
ments. Listing shows the section of the Refiner prompt imple-
menting the contextual understanding.

Critical Analysis: The second stage systematically identifies
required refinements based on the Analyzer’s structured output.
Through carefully engineered prompts, the agent analyzes trans-
formation requirements across multiple dimensions where ¢ €
Components(FP, ):

Dependency(c) order/concurrency
Constraint(c)  validation

Ale) = - (®)
Structure(c) organization
Semantic(c) content preservation

For dependency requirements, the LLM analyzes the instruction
dependency graph to determine the execution order, group concur-
rent instructions, and handle interleaving points. For constraint re-
quirements, it processes both explicit (directly stated rules) and im-
plicit constraints (derived from context), ensuring compatibility and
preservation. Structural requirements focus on component organiza-
tion following the anatomical template: role definition, context es-
tablishment, objective specification, and instruction sequencing. Se-
mantic requirements ensure the preservation of all atomic instruc-
tions and their completion criteria.

The critical analysis provides transformation directives that guide
the subsequent refinement stage. Each directive includes required

Listing 3.4: Linguistic analysis section

7. Linguistic_Analysis: {
"word_count": "integer",
"sentence_count": "integer",
"avg_words_per_sentence": "float",
"readability_score": "float",
"tone": "tone description",
"specialized_vocabulary": ["domain-specific terms"],
"instruction_density": "instructions per sentence",
"interleaving_patterns": [
{ "instructions": ["involved instruction ids"],
"pattern_type": "pattern description",
"description": "detailed explanation"}]}

Listing 3.5: Contextual understanding of Refiner prompt

You are an expert prompt engineer tasked with
optimizing prompt effectiveness through a
structured transformation while maintaining
semantic integrity.

INPUT:

Original Prompt: {original_prompt }

Analyzer Output:

- Role: {analysis.get ('Role/Identity’, 'N/A’)}

— Context: {analysis.get (’Context’, ’'N/A’)}

— Objective: {analysis.get ('Objective’, 'N/A’)}

— Instructions_Analysis:
{analysis.get (' Instructions_Analysis’, ’'N/A’)}

— Constraints: {analysis.get (’Constraints’, ’'N/A’)}

— Linguistic_Analysis:

{analysis.get ('Linguistic_Analysis’, ’'N/A’)}

modifications, preservation rules, and validation criteria, ensuring
that refinements maintain semantic fidelity while improving instruc-
tion clarity. This comprehensive requirements analysis enables sys-
tematic and verifiable prompt enhancement. This stage is opera-
tionalized through prompt directives as specified in Listing [3.6]

Listing 3.6: Transformation requirements section

TRANSFORMATION REQUIREMENTS:
1. Dependency-Aware Restructuring:
- Analyze the dependency graph from
Instructions_Analysis
- Order instructions to respect sequential
dependencies
- Group concurrent instructions appropriately
- Preserve critical path integrity
- Handle instruction interleaving points explicitly
2. Constraint Integration:
— Address all explicit constraints
- Incorporate implicit constraints
- Maintain cross-instruction constraints
— Validate constraint compatibility
3. Structural Enhancement:
a. Component Organization:
- Role definition
— Context establishment
— Objective specification
- Instruction sequence (following dependency
graph)
b. Section Demarcation:
- Clear section boundaries
— No cross-section repetition
- Explicit transition markers
4. Semantic Preservation:
- Maintain all atomic instructions
- Preserve completion requirements
— Respect instruction relationships
- Ensure constraint satisfaction

Structured Refinement: The third stage implements transforma-
tions identified in the critical analysis through a structured template
validated by empirical studies of LLM instruction following [21]
and prompt design principles [7]. The refinement process follows an
anatomical structure:

E(C) = Rolel||Context||Objective|| Instructions )

where C' represents the complete set of analyzed components from
the previous stages and || represents structured concatenation with
explicit boundary preservation. For each component, the LLM ap-
plies targeted transformations guided by the previous stage’s re-
quirements: standardizing role definitions into explicit persona state-
ments, consolidating context elements into prerequisite information
blocks (following constraint specifications), reformulating objectives
as concrete task specifications, and transforming instructions into
enumerated requirements. This structured approach is implemented
through a specific prompt as shown in Listing[3.7]

Constraint Validation: This stage implements comprehensive



Listing 3.7: Output format section

OUTPUT FORMAT:

Generate a refined prompt that:

1. Follows the hierarchical structure: Role —>
Context —-> Objective -> Instructions

. Preserves all dependencies and relationships

. Makes instruction sequences explicit

Maintains clear section boundaries

Integrates all constraints systematically

g w N

validation through constraint embedding in the refinement template:

V(P P,) = /\ Preserved(c, P,) (10)
ceC

where Preserved(c, P) executes a three-phase validation process to
verify component preservation. The process encompasses: (1) pres-
ence verification through exact string matching between original and
refined instructions, (2) structural validation ensuring maintained
section boundaries and formatting requirements, and (3) constraint
adherence verification for explicit requirements, including format-
ting rules and enumeration patterns. This validation mechanism en-
sures semantic fidelity throughout the refinement process through ex-
plicit template directives rather than post-hoc verification.

The validation is implemented through prompt directives that en-
force semantic preservation requirements, as shown in Listing [3.8]

Listing 3.8: Validation requirements section

VALIDATION REQUIREMENTS:

1. All atomic instructions from the original prompt
are preserved

. Dependency graph integrity is maintained

. Explicit and implicit constraints are satisfied

. No new requirements are introduced

Instruction relationships are preserved

o W

4 Experimental Setup

4.1 Dataset

We evaluate our framework using the dataset introduced by Google
Research’s instruction following evaluation framework [21], which
consists of verifiable instruction prompts designed to assess the
instruction-following capabilities of LLMs. It comprises 25 types of
verifiable instructions and is constructed around 500 prompts, with
each prompt containing one or more verifiable instructions.

The dataset is structured as a JSON file, where each line rep-
resents a prompt with associated metadata. The format of each
entry is as follows: { key: <unique_identifier>, prompt: <instruc-
tion_text>, instruction_id_list: [<list_of _instruction_types>],
kwargs:  [<list_of _instruction_parameters>] '}, where the
instruction_id_list field contains identifiers for the types
of instructions in the prompt, such as punctuation:no_comma
or length_constraints:number_words. The kwargs
field provides additional parameters for each instruction, such as the
number of required placeholders or word count constraints.

4.2 Models

We selected a diverse set of state-of-the-art LLMs that represent dif-
ferent architectures, training paradigms, and accessibility levels:

Anthropic’s Claude 3.5 Sonnet [1]: A proprietary model known
for its strong instruction-following capabilities.

OpenAD’s GPT-4 [10]: A capable, multi-modal model that has
demonstrated exceptional performance across various tasks.

Meta’s LLaMA 3.1 70B Instruct [14]: An advanced version of
open-source LLaMA, fine-tuned for instruction following.

Mistral AI’s Mixtral 8x7B Instruct [5]: A sparse mixture-of-
experts model optimized for instruction-based tasks.

DeepSeek AI’s DeepSeek-67B [2]: A recently released open-
source model trained on a diverse corpus of data.

4.3 Baselines

We compare CARE against SAMMO [13]], a compile-time prompt
optimization framework using dynamic function graphs with
mutation-based optimization. Using SAMMO’s public implementa-
tion with default parameters, comparisons are limited to Anthropic’s
Claude and OpenAI’s GPT models due to implementation con-
straints, while CARE extends to additional models including open-
source LLMs. Both target pre-deployment optimization but differ in
approach: CARE employs specialized agents for analysis and refine-
ment, while SAMMO uses graph-based transformations with evolu-
tionary search. SAMMO serves as a suitable baseline due to its out-
put compatibility with the instruction-following dataset’s complex
metadata structure.

4.4 Evaluation
4.4.1 Instruction Following Assessment

For evaluating instruction adherence, we adopt Google Research’s
instruction verification framework [21], which implements a sys-
tematic approach through categorical classification and determinis-
tic rule-based verification. This framework, along with its associated
verifiable prompts dataset, enables precise quantification of refine-
ment impact on instruction clarity and compliance. We employ three
key metrics from this framework to assess refinement effectiveness:

e Prompt-level Accuracy: Measures the proportion of prompts
where all verifiable instructions are followed, evaluating CARE’s
ability to maintain complete instruction adherence.

o Instruction-level Accuracy: Captures the proportion of individual
instructions followed across all prompts, providing insight into
CARE’s effectiveness at handling specific instruction types.

e Category-specific Accuracy: Evaluates performance across differ-
ent instruction categories, enabling analysis of CARE’s effective-
ness for specific instruction categories.

4.4.2 Linguistic Quality Assessment

To evaluate linguistic quality, we utilize G-Eval’s linguistic assess-

ment framework [9], which employs GPT-4 for analysis of output

quality across multiple linguistic dimensions. The framework imple-

ments carefully crafted prompts to guide GPT-4 in analyzing text

across four aspects:

e Coherence: Assesses logical flow and idea connectivity, ensuring
refinements maintain clear instruction relationships (1-5 scale).

e Consistency: Measures uniformity in style and factual alignment
(1-5 scale) to verify that refinements preserve original intent.

e Relevance: Evaluates alignment with prompt objectives (1-5
scale) and validates that refinements maintain task focus.

e Fluency: Examines grammatical correctness (1-3 scale), ensuring
refinements enhance rather than degrade linguistic quality.



4.4.3 Ablation Study

We evaluated CARE through component-level experiments to assess
the individual contributions of its modules: (a) an independent eval-
uation of the Analyzer to measure decomposition quality, (b) an as-
sessment of the Refiner’s performance with and without structured
input from the Analyzer, and (c) an evaluation of the validation
stage’s effectiveness using redundant data extraction mechanisms.
The results from our experiments demonstrate that each component
makes a substantive contribution to the overall system performance.

4.5 Experiments

We begin by preparing our dataset, which involves generating re-
sponses to both original and CARE-refined prompts across all five
selected models (cf. § [A.2).

5 Results and Analysis

We evaluated CARE’s computational efficiency by measuring to-
ken usage and response latency across benchmark tasks. CARE em-
ploys a deterministic single-pass approach, requiring only 8,000—
16,000 tokens per prompt, in contrast to SAMMO’s 20,000-50,000
tokens over 5-10 iterations. This design yields a latency of 3—4 sec-
onds, compared to SAMMO’s 15-20 seconds, thereby eliminating
the overhead associated with iterative convergence.

5.1 Cross-model Performance

Next, we evaluated CARE’s effectiveness through cross-model per-
formance analysis, comparing instruction-following between the
original and refined prompts across all evaluated models. As shown
in the upper portion of Table[I] this analysis provides a nuanced per-
spective on CARE’s impact across different LLM architectures. The
results indicate that CARE generalizes effectively, delivering sub-
stantial gains for both proprietary and open-source models. Unlike
SAMMO, whose evaluation is limited to Anthropic and GPT mod-
els, CARE demonstrates consistent improvements across all tested
architectures, including Mixtral (+7.4%), LLAMA (+3.1%), and
DeepSeek (+1.6%). Moreover, the magnitude of improvement ap-
pears inversely correlated with the base model’s initial performance,
suggesting that CARE is particularly effective in addressing limita-
tions in less optimized models.

Notably, GPT-4 exhibits the largest (+10. 16%), suggesting that
larger and more sophisticated models can benefit disproportionately
from refined prompts. This gain may stem from GPT-4’s advanced
contextual understanding, allowing it to more effectively leverage the
additional structure and clarity introduced by CARE.

Moreover, LLaMA-3’s significant improvement in instruction-
following performance is particularly noteworthy given its open-
source nature, highlighting the accessibility of CARE as a cost-
effective way to enhance performance in resource-constrained sce-
narios. Mixtral’s 7.4% increase, despite its smaller size, suggest that
sparse mixture-of-experts architectures can efficiently utilize refined
prompts, potentially through the activation of distinct subnetworks
tailored to varied instruction types.

The consistent improvements in instruction-level accuracy across
all evaluated models indicate that CARE’s refinements capture fun-
damental aspects of instruction clarity that transcend specific model
architectures. This universality suggests that our refinement strate-
gies are tapping into core principles of natural language understand-
ing and task specification.

5.2 Instruction Category Analysis

Instruction category analysis in the lower portion of Table[I] reveals
several key patterns. CARE shows particular strength in complex
instruction categories like Combination tasks (improving Anthropic
from 0.862 to 0.969) and Length Constraints (0.580 to 0.874), sig-
nificantly outperforming SAMMO in these areas. For simpler cate-
gories like Case Change and Detectable Content, both CARE and
SAMMO achieve comparable improvements, suggesting these tasks
may be closer to saturation. Notably, CARE maintains or improves
performance across all categories, while SAMMO shows occasional
performance degradation (e.g., Case Change in GPT: 0.888 to 0.786).

The significant improvement in the ‘combination’ category, which
includes tasks like repeating prompts or providing multiple responses
(e.g., GPT-4’s jump from 44.62% to 92.31%) reveals a weakness
in current LLM prompt processing: handling compound instruc-
tions [20]. This improvement suggests that LLMs may process in-
structions sequentially, struggling to maintain multiple objectives si-
multaneously. CARE’s success in this category can be attributed to
its strength in disambiguating complex, multi-step instructions into
clearer, sequential steps—a strategy that aligns well with the trans-
former architecture’s strength in processing sequential information.

The mixed results in the ‘punctuation’ category, particularly Mix-
tral’s slight decrease in accuracy, reveal a nuanced interaction be-
tween prompt refinement and model behavior. This indicates that
some refinements can introduce competing priorities for the model,
perhaps by overemphasizing other aspects of the instruction at the
expense of punctuation adherence. It suggests that LLMs may have a
finite “instruction bandwidth” [16], requiring balance in prompt de-
sign that maintains emphasis across all instruction categories.

The persistent challenge in the ’length constraints’ category across
all models points to a fundamental difficulty in precise numerical
control of language model outputs. This could be related to the ten-
sion between adhering to strict word counts and maintaining coher-
ent, natural language generation. This is rooted in the core training
objective of LLMs, which typically focuses on next-token prediction
rather than holistic output planning.

5.3 Impact on Linguistic Quality

The linguistic quality evaluation presented in Table 2] demon-
strates consistent improvements across models and metrics, with
both CARE and SAMMO enhancing baseline prompt quality. For
Anthropic, CARE achieves improvements in coherence (4.563 to
4.747), consistency (4.492 to 4.651), and relevance (4.479 to 4.705),
outperforming SAMMO’s more modest gains (coherence: 4.563 to
4.639, consistency: 4.492 to 4.571, relevance: 4.479 to 4.483). Sim-
ilarly, for GPT, CARE shows stronger improvements across metrics
compared to SAMMO, particularly in coherence (4.642 to 4.753 vs
4.642 to 4.601) and relevance (4.429 to 4.692 vs 4.429 to 4.524).

The modest’ meaningful linguistic improvements are particu-
larly noteworthy given that the evaluation dataset consists of care-
fully crafted, high-quality examples specifically designed for instruc-
tion following. This challenging evaluation context demonstrates
CARE’s ability to enhance even well-formulated prompts, suggest-
ing the potential for more substantial improvements when applied to
typical user-generated prompts.

5.4 Ablation Study Results

Component analysis reveals each stage’s contribution. The Analyzer
alone improves prompt structure clarity by 15-20% in readabil-



Table 1: Instruction following results for the original and CARE refined prompts across different LLM architectures.

Model Anthropic Mixtral LLAMA GPT DeepSeek
Prompt H Original SAMMO Refined | Original Refined | Original Refined | Original SAMMO Refined | Original Refined
Prompt-level 0.741 0.767 0.889 0.508 0.582 0.806 0.837 0.750 0.765 0.852 0.771 0.787
Instruction-level 0.820 0.836 0.927 0.612 0.689 0.868 0.886 0.827 0.830 0.896 0.841 0.851
Case Change 0.820 0.820 0.921 0.798 0.730 0.910 0.910 0.888 0.786 0.910 0.831 0.854
Combination 0.862 0.862 0.969 0.231 0.385 0.569 0.877 0.446 0.738 0.923 0.569 0.800
Detectable Content || 1.000 1.000 1.000 0.717 0.755 0.981 0.925 0.962 0.981 0.962 0.981 0.943
Detectable Format 0.930 0.936 0.904 0.764 0.822 0.930 0911 0.924 0.930 0.936 0.955 0.924
Keywords 0.761 0.859 0.926 0.724 0.828 0.908 0.865 0.834 0.853 0.871 0.816 0.834
Language 1.000 0.968 0.935 0.548 0.806 0.968 1.000 0.935 0.968 1.000 0.968 1.000
Length Constraints || 0.580 0.629 0.874 0.524 0.615 0.720 0.734 0.692 0.713 0.776 0.657 0.692
Punctuation 0.712 0.985 0.955 0.242 0.288 0.985 1.000 0.864 0.667 0.894 0.985 0.864
Start-End 0.955 0.940 0.970 0.597 0.731 0.925 0.985 0.970 0.925 0.970 0.985 0.955
Table 2: Linguistic feature comparison between the original and CARE refined prompts for different LLM:s.

Eval. Anthropic Mixtral LLAMA GPT DeepSeek

Metric ‘ ‘ Original SAMMO Refined | Original Refined | Original Refined | Original SAMMO Refined | Original Refined

Coherence 4.563 4.639 4.747 4.231 4.244 4.505 4.571 4.642 4.601 4.753 4.606 4.575

Consistency 4.492 4.571 4.651 4.043 4.052 4470 4.516 4.534 4.510 4.638 4421 4515

Fluency 2.856 2922 2.943 2.867 2919 2.859 2.942 2.892 2.927 2919 2.841 2.900

Relevance 4.479 4.483 4.705 3.949 3.949 4.351 4.351 4.429 4.524 4.692 4.384 4.489

ity metrics but shows minimal instruction-following gains (+2-3%)
without the Refiner. The Refiner without structured input achieves
only 40-50% of its full performance improvement, demonstrat-
ing the critical importance of systematic decomposition. Validation
stages prevent 8—12% of potential semantic drift cases, though occa-
sionally exhibit over-conservative behavior with roughly 5-8% false
rejection rate in complex multi-constraint scenarios where valid para-
phrasing is flagged as semantic drift.

5.5 Robustness and Reliability

To evaluate the robustness of CARE, we conducted consistency anal-
yses across multiple runs of structured analysis tasks. The goal was
to assess the stability of the model outputs in the face of inherent
stochasticity in language models. Our methodology involved exe-
cuting repeated trials with the evaluated models and measuring the
consistency of their outputs under identical prompt conditions.

The results demonstrate a high degree of consistency, with ap-
proximately 90-95% agreement observed across runs. This level of
stability significantly exceeds that of typical free-form generation
approaches, which are more susceptible to variability. We attribute
this improvement to CARE’s structured design and explicit valida-
tion constraints, which effectively reduce output variability while
mitigating—but not entirely eliminating—the intrinsic limitations of
language models. Furthermore, CARE’s modular architecture en-
hances reliability by allowing flexible adaptation through targeted
modifications of analysis and refinement prompts without disrupting
the overall framework. This adaptability supports continued robust-
ness as models evolve or as new use cases arise.

6 Conclusion

This paper introduces the multi-agent prompt refinement frame-
work, CARE, a novel approach to automated prompt refinement
that demonstrates significant potential for enhancing LLM perfor-
mance across diverse architectures. Our comprehensive evaluation,
utilizing a dataset of verifiable prompt instructions and the G-Eval
framework, reveals consistent improvements in instruction-following
while maintaining or enhancing linguistic quality.

Our analysis uncovers several key phenomena in LLM behavior,
including “refinement saturation”, and “instruction affinities”. These
insights not only validate CARE’s effectiveness but also contribute

to the broader understanding of LLM functionality and prompt engi-
neering principles. The observed “instruction interference” effect and
CARE’s success in refining compound instructions highlight critical
areas for future LLM development and prompt design strategies.

7 Limitations

CARE fails for approximately 5-8% of cases due to: (a) over-
structuring simple prompts by adding unnecessary complexity, (b)
difficulty with domain-specific jargon that breaks dependency analy-
sis, and (c) occasional reordering of instructions that changes subtle
emphasis. Specific examples include: (1) A technical prompt about
database optimization where CARE incorrectly restructured domain-
specific workflows, (2) A prompt with cultural references that CARE
misinterpreted due to a lack of contextual knowledge. The frame-
work’s effectiveness depends on the underlying LLM’s knowledge
base and capabilities, inheriting these limitations for specialized do-
mains where LLMs lack expertise.

While CARE demonstrates consistent performance improvements
across multiple LLMs, several limitations warrant acknowledgment.
Our evaluation relies on a dataset of verifiable prompt instructions
crafted by researchers, which may not fully represent the diversity
and potential flaws of prompts encountered in real-world applica-
tions. This could potentially overestimate CARE’s effectiveness on
less optimally constructed prompts.

Our evaluation methodology faces constraints from the complex
dataset specifications required by the instruction-following evalua-
tor, necessitating unique identifiers, instruction types, and structured
parameters. This complexity confined evaluation to a pre-existing
dataset of 500 prompts, as creating additional conformant datasets
presents significant challenges. Further, our English-focused evalua-
tion leaves cross-lingual capabilities unexplored.
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